

Summercourt Academy

Mathematics Calculation Guidance

Introduction

Welcome to the Summercourt Calculation Guidance! The purpose of this document is to create a new, updated guidance reflecting the requirements of the new curriculum and more importantly, the needs of our pupils based on knowledge and skills of those teachers working within our school and beyond.

This guidance aims to develop, model and explain core understandings and mathematical principles and progression to ensure consistency in the teaching and learning of mathematics in our school.
The focus of this guidance is the calculation of the four mathematical operations with an emphasis on written strategies to clarify processes and understanding and to make direct links to mental calculating. It is crucial that these mental strategies are discretely taught and linked to written strategies and not confined to starter activities in lessons. Children will use mental methods as their first port of call when appropriate, but for calculations that they cannot do in their heads, they will need to use an efficient written method accurately and with confidence.

The guidance shows clear steps towards achieving the end of year expectation as outlined by the National Curriculum in a progressive and scaffolded way by moving from concrete models and images to a final, perhaps more abstract representation of a mathematical calculation.

The overall aims of this guidance are that, when children leave our primary schools they:

\checkmark have a secure knowledge of number facts and a good understanding of the four operations supported by a fluency and understanding of the fundamentals of mathematics;
\checkmark know the best strategy to use, estimate before calculating, systematically break problems down into a series of simpler steps with perseverance and use estimation and rounding to check that an answer is reasonable;
\checkmark can use these methods accurately with confidence and understanding;
\checkmark can use known facts in a variety of different contexts and apply the best strategy when problem solving
\checkmark make use of practical resources, diagrams and informal notes and jottings to help record steps and partial answers to support calculation before moving onto the abstract;
\checkmark have an efficient, reliable, compact written method of calculation for each operation, which they can apply with confidence when undertaking calculations;
\checkmark be able to identify when a calculator is the best tool for the task and use this primarily as a way of checking rather than simply a way of calculating;
\checkmark be able to explain their strategies to calculate and, using spoken language, give mathematical justification, argument or proof.
2 | Page

Statutory Requirements:

Early Learning Goal - Children should count reliably with numbers from one to 10, place them in order and say which number is one more or one less than a given number. Use quantities and objects, add and subtract two single-digit numbers and count on or back to find the answer. Count on from first group to add two groups of object.
Vocabulary
Plus, add, more, total, sum, altogether, make, parts and wholes, how many more is . . .?, 'is equal to', 'is the same as'

3 | Page

Add single digit numbers	Addition built on experience of counting two groups of objects. Add groups by combining two parts to make a whole. Opportunities provided for comparing quantities, using language more/less. Combining quantities in 10-frames and using Numicon encourage non-counting-in-ones strategies. Arrangement of sets counted also encourage counting on and calculation strategies.
Record addition using + and $=$ symbols	Children should begin to construct simple number sentences verbally and with pictures initially before moving onto formal recording.
Addition can	
be done in	
any order.	

Statutory Requirements:
\oplus Read, write and interpret mathematical statements involving addition (+) and equals ($=$) signs - this means THE SAME AS - relate this to balance
number sentences and scales
\oplus Represent and use number bonds and related subtraction facts within 20
\oplus Add one-digit and two-digit numbers to 20, including zero
\oplus Solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $9=\square+7$
Vocabulary
Plus, add, more, total, sum, altogether, make, partition, parts and wholes, how many more is . . .?, tens, ones, teen number,
'is equal to', 'is the same as', number honds, number line, hundred squares, inverse, double, near double

7 |Page

Statutory Requirements:

\oplus Solve problems with addition using concrete objects and pictorial representations, including those involving numbers, quantities and measures, apply their increasing knowledge of mental and written methods.
\oplus Recall and use addition facts to 20 fluently, and derive and use related facts up to 100
\oplus Add numbers using concrete objects, pictorial representations and mentally, including:

- a two-digit number and ones.
- a two-digit number and tens,
- two two-digit numbers
- three one-digit numbers
\oplus Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
\oplus Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems Vocabulary
Plus, add, more, total, sum, altogether, make, partition, recombine, parts and wholes, how many more is . . .?, digit, hundreds, tens, ones, 'is equal to', 'is the same as', number bonds, number line, inverse, double, near multiples, commutative law

10 | Page

```
Statutory Requirements:
Add numbers mentally, including:
    - a three-digit number and ones,
    - a three-digit number and tens
    - a three-digit number and hundreds
\oplus \mp@code { A d d ~ n u m b e r s ~ w i t h ~ u p ~ t o ~ t h r e e ~ d i g i t s , ~ u s i n g ~ f o r m a l ~ w r i t t e n ~ m e t h o d s ~ o f ~ c o l u m n ~ a d d i t i o n }
\oplusstimate the answer to a calculation and use inverse operations to check answers
\mathrm{ Solve problems, including missing number problems, using number facts, place value, and more complex addition.}
```


Vocabulary

```
Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . .?, hundreds, 'is equal to', 'is the same as', digit, inverse, column addition, vertical, 'regroup', expanded, compact
```

Building on work done in Year 2, it is crucial that children have a secure understanding of place value as they move to more formal calculation strategies for addition; continuous checks and references should be made.

Objective	Concrete and visual representations		Imagery \rightarrow Abstract
Represent 3digit numbers in a range of	Make 3-digit numbers using dienes and place value cards, showing how they can be \square 214 partitioned.	Make the same number in different ways with place value counters. 230	Estimate position of numbers on blank number lines with different start/end numbers.
ways, showing an understanding of place value			
Expanded column method HTO + TO, HTO + HTO (without exchanging)		Children draw 100s, tens and ones to demonstrate partitioning and adding.	$\begin{aligned} & 100+30 \\ & +\quad 10+6 \\ & \hline 100+40+6=146 \end{aligned}$

Page

12 | Page

Statutory Requirements:

\oplus Add with up to 4 digits using the formal written methods of column addition where appropriate
\oplus Estimate and use inverse operations to check answers to a calculation
\oplus Solve addition two-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . ?, thousands, hundreds, tens, ones, 'is equal to', 'is the same as', inverse, column addition, vertical, 'regroup', expanded, compact, number line, increase, digits, tenths, hundredths, decimal (places), count through zero
Building on work done in Year 3, it is crucial that children have a secure understanding of place value; It may be appropriate to revisit the methods taught in 43 as a starting point.

Objective	Concrete and Visual representations		Imagery \rightarrow Abstract
Represent 4digit numbers in a range of ways, showing an understanding of place value	Make 4-digit numbers using dienes and place value counters, showing how they can be partitioned. $2,130$	Make the same number in different ways with place value counters. 420 with three 100 s and twelve 10 s	Estimate position of numbers on blank number lines with different start/end numbers.
			3240
Choose efficient mental strategies for adding numbers	Round and adjust to calculate, 350+98= Model with appropriate visual (place value counters). Add 100, take away 2.	$3999+1001=$ "Is a column method the best strategy? Why?"	

Statutory Requirements:

\oplus Add whole numbers with more than 4 digits, including using column addition where appropriate
\oplus Add numbers mentally with increasingly large numbers
\oplus Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
\oplus Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . .?, ten thousands, thousands, hundreds, tens, ones, 'is equal to', 'is the same as', inverse, column addition, vertical, 'regroup', expanded, compact, number line, increase, digits, tenths, hundredths, decimal (places), count through zero, efficient written method
Building on work done in Year 4, it is crucial that children have a secure understanding of place value; It may be appropriate to revisit the methods taught in 44 as a starting point.

YEAR 6

```
Statutory Requirements:
Perform mental calculations, including with mixed operations and large numbers
\oplus\mathrm{ Use knowledge of the order of operations to carry out calculations involving the 4 operations}
\oplus I can solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
| I can use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
```


Vocabulary

Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . .?, hundred thousands, ten thousands, thousands, hundreds, tens, ones, 'is equal to', 'is the same as', inverse, column addition, vertical, 'regroup', expanded, compact, number line, increase, digits, tenths, hundredths, decimal (places), count through zero, efficient written method, order of operations.

17 | Page

Statutory Requirements:

Early Learning Goal - Children should count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Use quantities and objects, add and subtract two single digit numbers and count on or back to find the answer.

Vocabulary

take away, less than, one less, two less . . the difference between, subtract, minus, fewer, decrease, 'is equal to', 'is the same as', leave, how many are left/left over? how many have gone?

Statutory Requirements:

- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Represent and use number bonds and related subtraction facts within 20
- Subtract one-digit and two-digit numbers to 20, including zero
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems.

Vocabulary
take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, 'is equal to', 'is the same as', leave, how many are left/left over? how many have gone? number line, how many more to make..?, how many more
is...than..?, how much more is..? how many fewer is...than..?, how much less is..? inverse,

Obj	Concrete and Visual representations						Imagery	Abstract	
Take away using object	Act out the maths story with concrete representations (objects, fingers, counters...) How many will be left on the bus then?						Draw the representation of a subtraction, cross out the Q \&囚O correct amount. E.g. 4-3 $\begin{array}{\|l\|l\|l\|} \hline x & x & x \\ \hline \end{array}$	Recall subtraction facts within 10. Progress to facts up to 20.	
Count back to subtract small numbers.							Draw a blank number line to work out a subtraction question, label the jumps correctly.	$-\quad$ Recall 1 less, 2 less, 3 lessthan (any 2digitnumber)	
See how subtraction 'undoes' addition	Show 5 beads on a bead bar. Count on 2 more.What number sentence can we write?$5+2=\square$$13+2=15$							Missing num $7-3=\square$ $7-\square=4$ $\square-3=4$ $\square-\square=4$	$\begin{aligned} & \square=7-3 \\ & 4=7-\square \\ & 4=\square-3 \\ & 4=\square-\square \end{aligned}$

Represent and use number bonds and related subtraction facts within 10 Part - Whole model. (Teach + and together)	Model how to use part whole model, starting with the whole amount, one part being taken away, how many left is part 2? Similar arrangement of 2 colours of items e.g. in egg box 10 -frame, cubes or with Numicon. - Write add and subtract number sentences for each set. Vary the way = sign being placed. $\begin{array}{lc} 10-6=4 & 4=10-6 \\ 10-4=6 & 6=10-4 \\ 4+6=10 & 10=4+6 \\ 6+4=10 & 10=6+4 \end{array}$	Children to draw the concrete resources they use. The bar model can also be used.	- Recall subtraction facts within 10. - Progress to facts up to 20. - Missing number problems - Missing operation problem. Which sign can be used in the blanks? E.g. $4 \square 6 \square 10$
Finding the difference by counting on Find change by counting on	Calculate the difference between 8 and 5, using cubes, Numicon or Cuisenaire rods, other objects - Finding change from $10 p$ after spending $8 p$ in the shop. - It's crucial that children understand the value of the coins and knowing that 1 ten is the same as 10 ones. - Demonstrate using the money line and count on from $8 p$ (doing 2 hops).	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	- Find the difference between 7 and 11 using a number line. Recording by - drawing jumps on prepared lines - constructing own lines, if appropriate - Children to explore why $9-6=8-5=7-4$ have the same difference.

21 | Page

SUBTRACTION

Statutory Requirements:

- Solve problems with subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures and apply their increasing knowledge of mental and written methods
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
- Subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones,
- a two digit number and tens,
- two two-digit numbers and
- subtract three one-digit numbers
- Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems Vocabulary
take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, 'is the same as', leave, how many are left? how many have gone? how many more to make..?, how many more is... than ..?, how much more is..? how many fewer is...than..?, how much less is..? inverse, partition, recombine, hundred
children build on the learning in $Y 1$ by initially using a number line to take away and then progress to using a number line to show the difference with larger numbers; including crossing tens boundaries.

Statutory Requirements:

- Subtract numbers mentally, including:
- a three-digit number and ones,
- a three-digit number and tens,
- a three-digit number and hundreds,
- a three-digit number and thousands
- Subtract numbers with up to three digits, using formal written methods of column subtraction where appropriate
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, 'is the same as', leave, how many have gone? how many more to make..?, how many more is... than ..?, how much more is..? how many fewer is...than..?, how much less is..? inverse, partition, recombine, hundred, column method
It is essential that this builds on previous learning and their knowledge and understanding of place value. Formal method should not replace effective mental strategies and at all stages children should be encouraged to use their number sense to decide on the most appropriate methods.

HTO - HTO Find a difference between pairs of numbers within the same century	Jump from the smaller amount to the next multiple of 10p, then to the next pound, finally to the bigger amount. Add up all the jumps. $5 p+40 p+£ 10=£ 10.45$ Count up to find the difference between amounts of money A computer game costs $£ 18$. So far Katie has saved up $£ 7.55$. How much more does she need to save to be able to buy the game? $£ 18-£ 7.55=£ 10.45$				
Formal method Expanded Column subtraction (without any exchanging)	47-25 Dienes can be replaced by place value counters. Physically move the tens and ones to take away the correct amount.T U $\mathbf{4 0}$ $\mathbf{7}$ 20 5 20 2$=$ 22 Children draw represent the base 10 pictorially. Cross out the correct amount of tens and ones to subtract 25 . Use place value cards to help partition and use a place value grid to help record.			T 40 20 20	0 7 5 2
			$\begin{array}{r}H \\ \hline 300 \\ -100 \\ \hline 200\end{array}$	T 40 20 20	$\frac{0}{6}$ $\frac{3}{3}$ 3
Expanded Column subtraction (with a single exchange)		Draw Dienes. Exchange 1 ten to 10 ones.	$\begin{array}{r}200 \\ -100 \\ \hline 100\end{array}$	T $6 Q$ 50 50 0 0	$\frac{0}{12}$ 4 4 8

Statutory Requirements:

- Subtract with up to 4 digits using the formal written methods of column subtraction where appropriate
- Estimate and use inverse operations to check answers to a calculation
- Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, inverse, partition, recombine, hundred, is equal to, 'is the same as', leave, how many have gone? how many more to make..?, how many/much more is... than ..?, how many fewer/much less is... than..?, number bonds, column method, thousand more/less, expanded, compact, estimate, efficient
It is essential that this builds on previous learning and their knowledge and understanding of place value. The methods taught in 43 should be the starting point and concrete resources and pictorial representations remain essential. Numbers will increase in size and the children will be exposed to more exchanging. Formal method should not replace effective mental strategies and at all stages children should be encouraged to use their number sense to decide on the most appropriate methods and use rounding to estimate answers.

Objective	Concrete and Visual representations	Imagery	Abstract
Mental strategy Subtract 3 digit number by counting up. HTO - HTO	Review on Mental strategy from Y 3 before progress to: Find a difference between pairs of numbers with different century 402-356 =	Jump from smaller number to the next multiple of ten first, then to the next hundred, finally to the greater number. Add up all the jumps: $40+4+$ $2=46$ so $402-356=46$	Count up or down in their head without using a visual support.
Formal method Expanded and compact subtraction of 3 digit numbers. With a single exchange	When/if children are ready, progress to example of subtraction of 4 digit numbers with one exchange.	Drawing of base ten imagery, indicating the exchange and cross out the correct amount. * estimate by rounding to check the answer.	

27 | Page

Statutory Requirements:

- subtract whole numbers with more than 4 digits, including the use of column subtraction
- Subtract numbers mentally with increasingly large numbers
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, 'is the same as', leave, how many have gone? how many more to make..?, how many more is... than ..?, how much more is..? how many fewer is...than..?, how much less is..? inverse, partition, recombine, hundred, column method, thousand more/less, expanded, compact
Subtraction in 45 , whole numbers will increase in size, decimal numbers with different decimal places and the children will be exposed to more exchanging. Formal method should not replace effective mental strategies and at all stages children should be given the opportunity to use their number sense to decide on the most appropriate methods and use rounding to estimate answers.

Obj	Concrete a		
Mental strategy Subtract pairs of numbers with $\underline{1}$ decimal place by counting up.	The average length of a mouse is 9 cm . Say that a young mouse is 6.7 cm long. How much more is it likely to grow? 1. Jump from the smaller number to the nearest whole number. Draw a hop labelled 0.3 cm (use bonds to 10 !), 2. Then a jump to the greater number. Draw and label the jump. 3. Add up the jumps on the number line to find the answer. 2.3 cm .		Count up in their head.
Subtract pairs of numbers with $\underline{2}$ decimal places by counting up. Subtract pairs of numbers with different	Cindy's best long jump this year was 2.96 metres, but today she has jumped a huge 3.24 metres! How much further has she jumped? 1. Jump from the smaller number to the nearest whole number. Draw a hop labelled the difference (use bonds to 100). 2. Then a jump to the greater number. Draw and label the jump. 3. Add up the jumps on the number line to find the answer. £62.38-£35.29 Jump to the nearest whole number. The number of jumps depends on children's knowledge of mental calculation.		* It is important that the children are secure in their knowledge of the decimal place value and knowledge of measuring units (e.g. cm and m).
numbers of decimal places (1 or 2)			

Statutory Requirements:

- Perform mental calculations, including with mixed operations and large numbers
- Use my knowledge of the order of operations to carry out calculations involving the 4 operations
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, leave, inverse, partition,
recombine, ten/hundred thousand, thousand, hundred, column method, thousand more/less, expanded, compact, order of operations.
In Y6, children will be consolidating and building on existing strategies that they have been taught so far, with numbers increase in size (up to $10,000,000$), and more complex decimal numbers (up to 3 decimal places) and the children will be exposed to more exchanging.
Formal method should not replace effective mental strategies and at all stages children should be given the opportunity to use their number sense to decide on the most appropriate methods and use rounding to estimate answers.

Statutory Requirements:

Early Learning Goal - Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Vocabulary

double, halves, the same, lots of, groups of, times (once, twice etc.), multiply, add again and again, repeated grouping, repeated adding, (how many) equal groups, total, is equal to, 'is the same as', counting in $2 \mathrm{~s}, 10 \mathrm{~s}$, odd, even

Statutory Requirements:

\otimes Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), add again and again, repeated grouping, repeated adding, (how many) equal groups, total, is equal to, 'is the same as', counting in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$, (forwards from/backwards from), how many times? multiple of, times, multiply, multiply by, repeated addition

\begin{tabular}{|c|c|c|c|}
\hline Objective \& Concrete and Visual representations \& Imagery \& Abstract

\hline Understand repeated (equal) grouping and repeated addition \& \begin{tabular}{l}
There are 3 equal groups, with 4 in each group.

There are 3 equal groups of 4.

3×4

$4+4+4$

\end{tabular} \& Children to represent the practical resources in a picture and use a bar model. \& \[

$$
\begin{aligned}
& 3 \times 4=12 \\
& 4+4+4=12
\end{aligned}
$$
\]

\hline Count in multiples of 2, 5, 10 and record number sentences, using X, = symbols \& \& \& | \otimes Record as repeated addition initially. $\mathbf{2 + 2 + 2 +}$ $2=8$ |
| :--- |
| \otimes Progress to use X and $=$ symbols: |
| 4 lots/groups of $2 s \rightarrow 4 \times 2=8$ |

\hline
\end{tabular}

Know all double
facts to 10

Statutory Requirements:

\otimes Recall and use multiplication facts for the 2,3 and 5 and 10 multiplication tables, including recognising odd and even numbers
\otimes Calculate mathematical statements for multiplication within the $2,5,10$ tables and write them using the multiplication (x) and equals (=) signs
\otimes Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
\otimes Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), add again and again, repeated grouping, repeated adding, (how many) equal groups, total, is equal to, 'is the same as', counting in $2 s, 3 s, 5 s, 10 s$, (forwards from/backwards from), how many times? multiple of, multiply, multiply by, repeated addition, commutative law

Objective	Concrete and visual representations		Imagery	Abstract	
Find doubles of 2 digit number by partitioning	Double 13$\begin{aligned} & 10+10=20 \\ & 3+3=6 \\ & 20+6= \end{aligned}$		Children to represent the practical resources in a picture	10	
Show multiplication is commutative using a bar model	$\begin{array}{ll} 3 \times 2=6 \\ 2+2+2=6 \end{array}$	It's a good idea to make 2 groups of 3 below this model to show that $3 \times 2=2 \times 3=6$	${ }^{6}$ e^{2} 0^{2} 0^{2} 3000 3000		$\begin{aligned} & +2+2=6 \\ & \times 2=6 \\ & 3+3=6 \\ & \times 3=6 \end{aligned}$
Show multiplication is commutative using arrays	:80:8 - ison ccoccocosom 000 3×5 or 3 lots of 5 5×3 or 5 lots of 3		Children draw array using dots or squares, showing equal groups in rows and columns.		$\begin{aligned} & =5 \times 2=10 \\ & +5=3 \times 5=15 \\ & +3+3+3=5 \times 3=15 \\ & +3+3=4 \times 3=12 \\ & +4=3 \times 4=12 \end{aligned}$

Statutory Requirements:

\otimes Recall and use multiplication facts for the 3,4 and 8 multiplication tables
\otimes Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for 2-digit numbers times 1-digit numbers, using mental and progressing to written methods
\otimes Solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where n objects are connected to m objects.
Time tables - Pupils recall $\mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 6, \mathrm{x} 8$ and x 9 . For x 4 and x 8 use doubling to help recall.
Vocabulary
odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), repeated adding, (how many) equal groups, total, is, equal to, times tables, Counting in $10 \mathrm{~s}, 100 \mathrm{~s}$, how many times? multiple of, multiply, multiply by, repeated addition, scale up, distributive law, commutative law

Applying Conceptual variation	Investigate the relationship between multiplication and division using bar model.					To strengthen the link between division and multiplication, and to present a varied form, the use of blank number grids is used to increase speed and mental agility whilst referring to the grid format.					Balancing calculations (represented by scales) to show commutative law. Solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where n objects are connected to m objects.
		3	3	3	3						
	larger quantity										
	r					\times		9	3		
	smaller quantity	larger quantity \div smaller quantity $=$ multiple						54	18		
		smaller quantity \times multiple $=$ larger quantity				5		45			
		larger quantity \div multiple $=$ smaller quantity					16			20	
										5	

```
Statutory Requirements:
    \otimes Use place value, known and derived facts to multiply mentally, including x0 x1 and multiplying together three numbers
    Recognise and use factor pairs and commutativity in mental calculations
    Multiply two-digit and three-digit numbers by a one-digit number using formal written layout
    Solve problems involving multiplying, including the distributive law to multiply two-digit numbers by one-digit including positive number scaling
        problems and correspondence problems where n objects are connected to m objects
    \otimes Time tables - Pupils recall all times tables up to 12 x 12.
```

Vocabulary
odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), total, counting in 10s, 100s, 1000s, how many times?
multiple of, multiply, multiply by, scale up, distributive law, regrouping, times tables, product of

Objective	Concrete and Visual representations	Imagery	Abstract
Generate new multiplication facts using known fact	 * Pupils reinforce $\times 10, \times 100$ and $\times 1000$ through conversions of units of measure in contextual situations.		$8 \times 3=5 \times 3+3 \times 3$ Begin to draw links with multiples of 10 and 100 through carefully selected variation: $\begin{aligned} & 3 \times 8=24 \\ & 3 \times 80=240 \\ & 3 \times 800=2400 \\ & 30 \times 8=240 \\ & 300 \times 8=2400 \end{aligned}$
Mental strategies Including memorising all times tables.	Find factors of numbers up to 40 using arrays (e.g. 24) 24 is therefore a multiple of $1,2,3,4,6,8,12$ and 24 and these numbers are called its factors. They are numbers that will go into 24 without leaving a remainder, and they come in pairs, e.g. 6 and 4.	Double 3 digit numbers by partitioning (including exchanging) X 4 = Double and double again. $X 8$ by doubling it three times	$\begin{aligned} & 2 \times 113=226 \\ & 4 \times 113=452 \\ & 8 \times 113=904 \end{aligned}$


```
Statutory Requirements:
    \otimes identify multiples and factors: all factor pairs of a number, common factors of two numbers
    \otimes Establish whether a number up to 100 is prime and recall prime numbers up to 19
    \otimesecognise and use square numbers and cube numbers and their notation
    \otimes Multiply numbers up to four digits by a one- or two-digit number using a formal written method
    \otimes Multiply whole numbers and those involving decimals by 10,100 and 1000.
    \otimes Solve problems using multiplication and division using my knowledge of factors and multiples, squares and cubes
```


Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), (common) multiple of, times, multiply, multiply by, scale up, decimal point, decimal place, factors, square number, cube number, prime number, prime factors,

In year 5 the children begin to multiply bigger numbers and progress to multiplying by 2 digits. However, it is entirely appropriate to revisit and check methods from 44 to ensure that their place value knowledge and understanding of carrying is secure


```
Statutory Requirements:
    \otimes Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
    \otimes Perform mental calculations, including with mixed operations and large numbers
    \otimes Identify common factors, common multiples and prime numbers.
    \otimes Use knowledge of the order of operations to carry out calculations involving the 4 operations
    \otimes Multiply one-digit numbers with up to 2 decimal places by whole numbers
    Solve problems involving multiplication and division which require answers to be rounded to specified degrees of accuracy
```


Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), (common) multiple of, times, multiply, multiply by, scale up, decimal point, decimal place, factors, square number, cube number, prime number, prime factors,

In year 6 the children begin to multiply bigger numbers and progress to multiplying by 2 digits. However, it is entirely appropriate to revisit and check methods from $Y 4, Y 5$ to ensure that their place value knowledge and understanding of carrying is secure.

Formal method Multiply a decimal number by a 1 digit number	When multiplying d extended method. As confidence grows multiply by $10 / 100$ the answer.	als, initially begin dren may find ot iminate decimal	ng the tegies e.g. nd then adjust	$\frac{\mathrm{x}}{3}$	£60	$\begin{array}{l\|c\|} \hline £ 3 & 60 \mathrm{p} \\ \hline £ 9 & £ 1.80 \end{array}$	$\frac{7 p}{21 p}=£ 71.01$	$\begin{array}{r} \mathrm{T} O \phi \mathrm{t} \\ \mathrm{f} 23.67 \\ \mathrm{X} 3 \\ \hline 71001 \end{array}$
Formal method Long multiplication to multiply 3digit then 4digit numbers with decimals by numbers between 10 and 35 ;	36.21×17 Use rounding to app Estimate the answe	mate. bout less than 36						$\begin{array}{r} 36.21 \\ \times \quad 17 \\ \hline 251 \\ \hline 362.47 \\ 1 \\ \hline 615.57 \end{array}$
Applying Conceptual variation	Long multiplication 24×16 becomes Answer: 384 Short multiplication 24×6 becomes $\begin{array}{r} 24 \\ \times \quad 6 \\ \hline 144 \\ \hline 2 \end{array}$ Answer: 144	$$ Answer: 3224 342×7 becomes $\begin{array}{r} \\ \\ 3 \end{array} 42 \begin{aligned} & 2 \\ & \times \\ & \end{aligned} 39948$ Answer: 2394	$\left.\begin{array}{ccc}124 \times 26 & \text { becomes } \\ 1 & 1 & 2 \\ & 1 & 2 \\ \times & 4 \\ \times & & 2\end{array}\right)$ $\begin{array}{cccc} 2741 \times 6 & \text { become } \\ & 2 & 7 & 4 \\ \times & & & \\ \hline 1 & 6 & 4 & 4 \\ \hline & 4 & 2 \end{array}$	Be aware of how calculations may be in a different order or presented differently. What do you notice is the same/different?				

Statutory Requirements:

\div Early Learning Goal - Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing

Vocabulary

odd, even, double, halves, the same, lots of, groups of, share - share equally, divided by, left, left over
Early division should be introduced in EYFS predominately using language such as halving and sharing. To develop an understanding of the concepts children should use concrete resources and see representations of division as both grouping and sharing.

Statutory Requirements:

\div Solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
\div Recognise, find and name: one half ($1 / 2$) as one of 2 equal parts of an object, shape or quantity.
\div Recognise, find and name: one quarter ($1 / 4$) as one of 4 equal parts of an object, shape or quantity.
Vocabulary
odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array divided by, left, left over
continue from EYFS, Y1 children continue to develop an understanding of the concepts using concrete resources and imagery representations of division as both grouping and sharing. Working with numbers up to 20.

Objective	Concrete and Visual representations	Imagery	Abstract
Understand halving as dividing into 2 equal parts.			What is half of this amount?
Recognise and make one-half $\left(\frac{1}{2}\right)$ in a range of ways (discern examples from nonexamples); identify one quarter ($\frac{1}{4}$)	Half $\left(\frac{1}{2}\right)$, quarter ($\left(\frac{1}{4}\right)$ of a shape/capacity/length: fold papers, shapes, strings, playdough in half, then fold in half again to create quarters Share number of objects into 2 equal parts to find $1 / 2,4$ equal parts to find $1 / 4$. Use 10 -frame, and cubes. Using a bar, pupils begin to explore halving and then subsequent quartering as a way of sharing and using a bar (piece of paper) folder in half to create two groups onto which items can be drawn or placed. This extends to quarters and sharing this into 4 groups.	Which is $1 / 2$ Which of these diagrams are $1 / 4$ blue?	Colour half of each whole shape:

Use halves and quarters as counting numbers, going over 1							
Understand division as sharing		Draw pictu of sha a qua into 2 equal parts. 6 share equally Draw				$\begin{gathered} 6 \div 2=3 \\ 3 \end{gathered}$	3
Understand division as grouping	Physically group items and count in groups. Socks, cubes... Other scenario can be put pupils in groups of x. How many group do we have? "There are x altogether." "There are x groups." "There are x in each group."				Ive vision roblems awing , how	$$	$\begin{aligned} & \hline 2 \\ & \hline \square=6 \div 2 \\ & 3=6 \div \square \\ & 3=\square \div 2 \\ & 3=\square \div \square \end{aligned}$
Understand x and \div are opposite. Use arrays and bar model to represent division		Solve pract arrays	3	3	ps, 3	$\begin{aligned} & 4 \times 3=12 \\ & 3 \times 4=12 \\ & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$	

Statutory Requirements:

\div Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables fluently, including recognising odd and even numbers.
\div Calculate mathematical statements for multiplication and division within the 2,5 and 10 multiplication tables and write them using the multiplication (x), division (\div) and equals $(=)$ signs
\div Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
\div Recognise, find, name and write $1 / 3,1 / 4,2 / 4,3 / 4$ of a length, shape, set of objects or quantity
\div Write simple fractions: $1 / 2$ of $6=3$
\div Recognise equivalent fractions $2 / 4=1 / 2$.
Vocabulary
odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array divided by, left, left over division, chunks, multiples, fraction
Follows on from the learning in year 1 with multiplication and is again linked to the use of arrays to develop greater conceptual understanding. The focus should be around using divisors of 2,5 and 10 (before progressing to 3).

50 | P age

Applying	How many cars are needed to take 18 children to the match? 4 children per car.	Grouping strategy modelled with covered arrays and Numicon: how many [divisors] in [dividend]?	Missing number problems.
Variation			

Statutory Requirements:

\div Recall and use multiplication and division facts for the 3,4 and $8 \times$ tables
\div Write and calculate mathematical statements for division using the multiplication tables they know, including 2-digit divided by 1-digit using mental and progressing to formal written methods
\div Solve problems involving division, including missing number problems, or positive number scaling problems and correspondence problems where n objects are connected to m objects.
\div Recognise, find and write fractions of a discrete set of objects using Unit and non-unit fractions with small denominators
\div Recognise and show equivalent fractions
\div Compare, order and +/- unit fractions, fractions with same denominators
Vocabulary
odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array divided by, left, left over division, chunks, multiples, fraction partitioning, recombining, divisor, dividend, quotient

In order to access the curriculum at this stage it is essential that the children are developing fluency with their times tables as they will be beginning to work with a wider range of divisors: $\times 2, \times 5, \times 10, x 3, x 4, x 6, \times 8$ and $x 9$. Strategies should be supported heavily at the beginning with concrete resources and pictorial representations.

YEAR 4

DIVISION

```
Statutory Requirements:
\divRecall multiplication and division facts up to 12 }\times1
\div Use place value, known and derived facts to divide mentally, including dividing by 1
\div Solve problems involving dividing a three-digit number by one-digit and number using a formal layout
\divRecognise and show equivalent fractions
\div Decimal equivalent of }1/4,1/2,3/
OCompare, order and +/- unit and non-unit fractions, fractions with same denominators
```

Vocabulary
odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array, left
over, division, divided by, chunks, multiples, fraction partitioning, recombining, divisor, dividend, quotient, short-division, algorithm,
prime number, long-division, factor pairs, square

Division in year 4 builds on the informal method taught in year 3. It is crucial that the children are becoming increasingly fluent with their times table knowledge and associated facts. As they begin to divide using bigger 'chunks' it is also essential that their place value knowledge is secure, in order to readily access the concepts involved.

Objective	Concrete and Visual representations	Imagery	Abstract	
Find equivalent fractions, calculate fractions of amounts (unit and non-unit fractions	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$
Find all factors pairs	Systematically, using times table knowledge. Record as the 'factor bug'			

Statutory Requirements:

\div Identify multiples and factors, including finding all factor pairs of a number, common factors of two numbers, know and use the vocabulary of prime numbers and establish whether a number up to 100 is prime
\div Multiply and divide numbers mentally drawing on known facts
\div Divide numbers up to 4 digits by a one-digit number using a written method and interpret remainders appropriately for the context
\div Divide whole numbers and those involving decimals by 10,100 and 1000. Read and write decimal numbers as fractions
\div Compare and order fractions (with denominator is a multiples of same number)
\div Identify, name and write equivalent fractions
\div Recognise and convert between mixed numbers and improper fractions
$\div+/$ - fractions (denominator is a multiples of the same number)
\div Multiply proper fractions and mixed numbers by whole numbers
\div Recognise ' $\%$ ' and write percentages as a fraction (denominator ' 100 ') and a decimal
\div Solve problems knowing decimal and $\%$ equivalents
Vocabulary
odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array, left over, division, divided by, chunks, multiples, fraction partitioning, recombining, divisor, dividend, quotient, short-division, algorithm, prime number, factor pairs, square, place value holder, integer

In year 5 the children will begin to work with bigger numbers and a wider range of divisors. They will need to spend time the challenging concepts taught in year 4, particularly with exchanging. It is appropriate to continue to use place value counters as a mechanism for support.

57 \| Page

58 | Page

Statutory Requirements:

$\div \quad$ Divide numbers up to 4 digits by a two-digit number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the context.
\div Divide numbers up to 4 digits by a two-digit number using the formal written method of short division as appropriate.
\div Use common factors to simplify fractions, common multiples to express fractions in same denominator
\div Compare, order and $+/-$ fractions including fractions>1 and fractions with different denominator
$\div \quad \mathrm{x}$ simple pairs of proper fractions (answer in simplest form)
$\div \quad \div$ proper fractions by whole number.
$\div \quad \mathrm{x} / \div$ nos by $10,100,1000$
\div Solve problems involving relative sizes of two quantities (missing values using integer x / \div facts)
\div Solve problems involving the calculation of $\%$ and the use of $\%$ for comparison
\div Solve problems involving similar shapes where the scale factor is known or can be found
\div Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

Vocabulary

odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array, left over, division, divided by, chunks, multiples, fraction partitioning, recombining, divisor, dividend, quotient, short-division, long
division, algorithm, prime number, factor pairs, square, place value holder, integer

Objective	Concrete and Visual representations	Imagery	Abstract	
Add and subtract fractions with different denominators	Fraction cards to show conversion into common denominators and calculating over whole-number boundaries.	Example: $2 \frac{1}{3}-\frac{3}{6}$		

Multiply and
divide unit
fractions and
simple non-
unit fractions
:---
by a fraction (modelled in two steps).

62 \| Page

