

Summercourt Academy

Mathematics Calculation Guidance

Introduction

Welcome to the Summercourt Calculation Guidance! The purpose of this document is to create a new, updated guidance reflecting the requirements of the new curriculum and more importantly, the needs of our pupils based on knowledge and skills of those teachers working within our school and beyond.

This guidance aims to develop, model and explain core understandings and mathematical principles and progression to ensure consistency in the teaching and learning of mathematics in our school.

The focus of this guidance is the calculation of the four mathematical operations with an emphasis on written strategies to clarify processes and understanding and to make direct links to mental calculating. It is crucial that these mental strategies are discretely taught and linked to written strategies and not confined to starter activities in lessons. Children will use mental methods as their first port of call when appropriate, but for calculations that they cannot do in their heads, they will need to use an efficient written method accurately and with confidence.

The guidance shows clear steps towards achieving the end of year expectation as outlined by the National Curriculum in a progressive and scaffolded way by moving from concrete models and images to a final, perhaps more abstract representation of a mathematical calculation.

The overall aims of this guidance are that, when children leave our primary schools they:

- ✓ have a secure knowledge of number facts and a good understanding of the four operations supported by a fluency and understanding of the fundamentals of mathematics;
- ✓ know the best strategy to use, estimate before calculating, systematically break problems down into a series of simpler steps with perseverance and use estimation and rounding to check that an answer is reasonable;
- \checkmark can use these methods accurately with confidence and understanding;
- ✓ can use known facts in a variety of different contexts and apply the best strategy when problem solving
- ✓ make use of practical resources, diagrams and informal notes and jottings to help record steps and partial answers to support calculation before moving onto the abstract;
- ✓ have an efficient, reliable, compact written method of calculation for each operation, which they can apply with confidence when undertaking calculations;
- ✓ be able to identify when a calculator is the best tool for the task and use this primarily as a way of checking rather than simply a way of calculating;
- ✓ be able to explain their strategies to calculate and, using spoken language, give mathematical justification, argument or proof.

RECEPTION

ADDITION

Statutory Requirements:

Early Learning Goal – Children should count reliably with numbers from one to 10, place them in order and say which number is one more or one less than a given number. Use quantities and objects, add and subtract two single-digit numbers and count on or back to find the answer. Count on from first group to add two groups of object.

Vocabulary

Plus, add, more, total, sum, altogether, make, parts and wholes, how many more is . . .?, 'is equal to', 'is the same as'

Objective	Concrete and Visual representations	Imagery \rightarrow Abstract
Count reliably with numbers from 1-20	 Children in EYFS first learn about addition by playing with real objects and pictures. For 1:1 counting, number sounds are clearly separated and items counted with exaggerated movements. Children learn that the last number is the total for the set— count small sets in irregular arrangements. Point out that there is the same number even though they are rearranged. Counted objects are rearranged in regular patterns to support quantity recognition. Progress by counting items from a larger set. Count objects that can't be moved. 	 Progress by making objects not visible once counted; Count movements and sounds.
Identify and use numerals. Secure knowledge of numbers as quantities	 Children match numerals to different representations of number for quantities 1-10 (e.g. making and finding 5 in different ways). Children show numbers in different ways on fingers; Quick recognition of regular and irregular dot patterns, with larger quantities visualised in two parts (e.g. see 5 as 3 and 2). Children are taught to recognise quantities on 10-frame and base-5 number track Image shown brieffy. How many toys? 	 Forwards and backwards number sequences supported using songs and rhymes. Continue number sequences starting from different numbers e.g. 3, 4, 5, 6 Number tracks used, with numbers hidden to add challenge as appropriate. 2 3 4 5 6 7 8 9 10 4 6 8 9 7 8 1 11

Statutory Requirements:

- Read, write and interpret mathematical statements involving addition (+) and equals (=) signs this means THE SAME AS relate this to balance number sentences and scales
- \oplus Represent and use number bonds and related subtraction facts within 20
- $\oplus\;\;$ Add one-digit and two-digit numbers to 20, including zero
- ⊕ Solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as 9 = □ + 7

Vocabulary

Plus, add, more, total, sum, altogether, make, **partition,** parts and wholes, how many more is . . .?, **tens, ones, teen number,** 'is equal to', 'is the same as', **number bonds, number line, hundred squares, inverse, double, near double**

Objective	Concrete and Visual representations	Imagery→ Abstract
Represent 1-10 in different ways, subitising small quantities, without counting all	Immediate recognition of Numicon, 10-frame images, tally charts, dot patterns and finger patterns.	Estimate position of numbers on blank number lines with different start/end numbers.
items Partition 1-10 in all possible	 Subitizing regular and irregular difference intersection of 2 colours of the section of the sectio	ART PART WHOLE
ways, write number sentences using + and =	visualising quantities in two or with Numicon. 'parts'	PART PART
		T TART VARY PART TART

Know 1 more/less in the range 1-100, <u>focusing on</u> <u>bordering tens</u> <u>boundaries</u>	 Primarily children will work with numbers within 20 as they learn to confidently cross the ten boundary, progressing to numbers beyond 20. Identify and show one more/less in different ways. Example game: one more/less bingo. Use landmarks of 5s to help place other numbers on a washing line or bead bar. Where is 11, 13? How dor you know? Identify and show one more/less bingo. 				
Recognise tens and ones in 2- digit numbers	 Count on from 10 to make teen numbers. 10 + 3 = ? Organise large quantities in groups of 10 and ones. Partition 2- digits numbers using dienes, place-value cards. Thurkeen Thurkeen				
Add 2 numbers by counting on (using objects, then using fingers)	 Adding can be done in any order. Demonstrate symbolism of balanced calculations and commutative number sentences. Show equals sign can be use on either side of a calculation (? = 7+5). As a strategy, this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater is more efficient. E.g. 15 = 12 + 3 As a strategy this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater is more efficient. E.g. 15 = 12 + 3 As a strategy this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater is more efficient. E.g. 15 = 12 + 3 As a strategy this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater is more efficient. E.g. 15 = 12 + 3 As a strategy this should be limited to adding small quantities only (1, 2 or 3) with pupils understanding that counting on from the greater number, using fingers to tract the jumps. 				
Know number bonds to 10	 Identify patterns of the number bonds using various visual representations (such as fingers, Numicons number line or bead bar, bar models) ID = I+9 2+8 3+7 4+6 Rainbow to 10 A model bar				

.

8 Page

YEAR 2

Statutory Requirements:

- Solve problems with addition using concrete objects and pictorial representations, including those involving numbers, quantities and measures, apply their increasing knowledge of mental and written methods.
- \oplus Recall and use addition facts to 20 fluently, and derive and use related facts up to 100
- Add numbers using concrete objects, pictorial representations and mentally, including:
 - a two-digit number and ones.
 - a two-digit number and tens,
 - two two-digit numbers
 - three one-digit numbers
- ① Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot

① Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems Vocabulary

Plus, add, more, total, sum, altogether, make, partition, **recombine,** parts and wholes, how many more is . . .?, digit, **hundreds**, tens, ones, 'is equal to', 'is the same as', number bonds, number line, inverse, double, near multiples, commutative law

Objective	Concrete and Visual representations	Imagery→ Abstract
Number facts and Parts Whole model (teach + and – together)	Building on work done in Year 1, revise number bonds to 10 and the inverse. Progress to bonds to 100 20 = 7 + 13 20 - 7 = 13 $20 = 13 + 7 20 - 13 = 7$ $7 + 13 = 20$ $13 + 7 = 20$ Addition is commutative. $1 + 1 = 1$ $30 + 40 = 70$	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
Represent number 1-100 in different ways, showing understanding of place value	Represent ten/teens using Dienes, Numicon, ten frames showing numbers in different ways. Partition 2 digit numbers using place value cards. Draw images show a number in different ways using base 10 Find missing number on 100 squares	 Estimate position of numbers on blank number lines with different start/end numbers.

Add 1 digit number with a 2 digit number.	Using Dienes 41 + 8 =	Draw tens (lines) and ones (dots) 10s $1s1111$ $1+8=940+9=4941$
TO + O		4 9 (1)
<u>10s.</u>	$ \begin{array}{c} \textcircled{tr} \textbf{Mental strategy} \\ \texttt{Counting on from the} \\ \texttt{larger number.} \\ \texttt{15+3} = \\ \texttt{15+3} =$	 → Progress to using number facts & recognising patterns and the children won't need to count on. 5 + 3 = 25 + 3 = 15 + 3 = 35 + 3 = 95 + 3 =
Add 1 digit number with a 2 digit number.	16 + 7 = 16 + 4 + 3 = 20 + 3 = 23	Draw ten frames and dots to show the partitioning of the 1 digit numbers to compliment the 2 digit number to make a multiple of 10⊕ Progress to use of blank number line
TO + O <u>Crossing 10s</u> .	Use other representations such as Dienes, Beads strings: 28 + 5 =	before adding. 28+5= $+2$ $+3$
(make the next multiple of 10 first)	0 15 20 25 30 28+5= 0 15 20 25 30	Draw Dienes:
Add multiples of ten TO + 10s		\oplus Draw Dienes: 43 + 20 = 43 + 20 = 63 (spider) Count in 10s: 43, 53, 63 43 + \Box = 83 \oplus Draw 2 jumps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10 + 103	 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

•

Mental strategy	Investigate different strategies to + 9, + 19, +29 or +11, +21, +31	37 + 21	37 + 19
Add near	Arrive at the most efficient method, which is by adding	+10 +10	+10 +10
multiples of 10	multiples of ten and then adjust.		
	30 35 40	45 50 55 30	35 40 45 50 55
TO + 9, 19	Children should make observation on what	47 57 +10 +1 58	37 47 57 +10 +10 56
TO + 11, 21	happen to each digit after adding 9 or adding 11	+1 58	
10 + 11, 21	and able to describe this observation.	45 50 55 <u>30</u>	35 40 45 50 55 1
	37	47 57 58	3'7 4'7 <mark>5</mark> '7 56
Mental strategy	Similar as above. 37 + 22		
Counting on,	Partition only 22 = 20 + 2.		
partitioning the	Count on 2 tens and 2 ones 30 35 40 45 50 55 37 47 57		
2 nd number only	57 47 57		
Add two 2-digit	Use concrete apparatus to represent	Petal method (an alternative	60+5
numbers by	each 2 digit numbers. $35 + 24$	method to demonstrate	
partitioning	Then count all the tens together and	partitioning): Use visual images	+ 20+4
	count all the ones together.	of tens and 60 20 80	80+9=89
	Recombine to find the answer.	ones in	\bigcirc
TO + TO	(5 tens + 9 ones = 59)	each petal $(65) + (24) = (89)$	(?)
<u>(without</u>	Progress to children drawing images of	for (5) (4) (9)	\sim
exchanging/	tens and ones	scaffolding.	
regrouping)	E.g. 24 + 15		Δ
	**	 Alternatively, use place value 	$\begin{pmatrix} 21 \end{pmatrix} \begin{pmatrix} 34 \end{pmatrix}$
	T O	cards to demonstrate	$\bigcirc \bigcirc$
		partitioning	
		$\overline{65} + \overline{24} = \overline{60} + \overline{20} + \overline{5} + \overline{4}$?
		= 80> + 9>	21 34
		= 89>	
Add two 2-digit	① Regroup 10 ones to make 1	\oplus Children $ O_s _s$	36 + 25 = 30 + 20 = 50
numbers by	ten. 10s 1s	draw	5+5=10
partitioning	888	tens and III	50 + 10 + 1 = 61
		ones.	1 5
TO + TO			30+6
<u>(with</u>	R R R		
exchanging/	HAR ANAL		+20+5
<u>regrouping)</u>		6 1	50+11=61
	6 1	indicating ten ones make 1 tens!	

•

•

Statutory Requirements:

 $\oplus \,\, {\rm Add} \,\, {\rm numbers} \,\, {\rm mentally, \, including:}$

- a three-digit number and ones,
- a three-digit number and tens
- a three-digit number and hundreds
- \oplus Add numbers with up to three digits, using formal written methods of column addition
- $\oplus\,$ Estimate the answer to a calculation and use inverse operations to check answers
- ⊕ Solve problems, including missing number problems, using number facts, place value, and more complex addition.

Vocabulary

Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . .?, hundreds, 'is equal to', 'is the same as', digit, inverse, **column addition, vertical, 'regroup', expanded, compact**

Building on work done in Year 2, it is crucial that children have a secure understanding of place value as they move to more formal calculation strategies for addition; continuous checks and references should be made.

Objective	Concrete and Visual representa-	Imagery→ Abstract	
Represent 3digit numbers in a range of	Make 3-digit numbers using dienes and place value cards, showing how they can be partitioned.	Make the same number in different ways with place value counters. 230	Estimate position of numbers on blank number lines with different start/end numbers.
ways, showing an understanding of place value			230 0 230 0 230 0 500 0 1000
Expanded column method HTO + TO, HTO + HTO <u>(without</u> <u>exchanging)</u>		Children draw 100s, tens and ones to demonstrate partitioning and adding.	100+30 <u>+ 10+6</u> 100+40+6=146

Expanded method. HTO + HTO with a single exchange (10 or 100)	Image: Constraint of the state of the s	Chidlren draw PV counters as below or using PV cards to support the recording of the expanded method. Make realistic estimation by rounding. $100 + 40 + 6$ $500 + 20 + 7$ $600 + 60 + 13$ $10 3$ $600 + 70 + 3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Compact method. HTO + HTO <u>with more</u> <u>than 1</u> <u>exchanges</u> (10/100/1000)	243 + 368 100s 10s 1s 000 000 000 000 000 000 000 000 0000 000 000 000 000 000 000 000 000 0000 000 000 000	243 + 368 Chidren to represent the counters in a place value chart, circling when they make an exchange. 654 + 567 Draw PV counters or using PV cards to support the recording of formal written method.	H T O 243 $ \frac{+368}{611} $ $ \frac{-11}{11} $ H T O 6 5 4 $ \frac{+5}{67} $ $ \frac{-12}{11} $ = 1221
Applying Conceptual Variation	21 +34 21+34 = = 21+34	 ⊕ In year 3, there are 21 children and in year 4, there are 34 children. How many children in total? ⊕ 21 + 34 = 55. Prove it ⊕ Calculate the sum of twenty-one and thirty-four. 	Missing digit problems: 10s 1s 2 2 21 34 21 34

•

Statutory Requirements:

 \oplus Add with up to 4 digits using the formal written methods of column addition where appropriate

 $\oplus\,$ Estimate and use inverse operations to check answers to a calculation

 \oplus Solve addition two-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . .?, **thousands**, hundreds, tens, ones, 'is equal to', 'is the same as', inverse, column addition, vertical, 'regroup', expanded, compact, number line, **increase**, digits, **tenths, hundredths, decimal (places),** count through zero

Building on work done in Year 3, it is crucial that children have a secure understanding of place value; It may be appropriate to revisit the methods taught in Y3 as a starting point.

Objective	e Concrete and Visual representations		Imagery → Abstract
Represent 4digit numbers in a range of ways, showing an understanding of place value	Make 4-digit numbers using dienes and place value counters, showing how they can be partitioned.	Make the same number in different ways with place value counters. 420 with three 100s and twelve 10s	Estimate position of numbers on blank number lines with different start/end numbers.
Choose efficient mental strategies for adding numbers	Round and adjust to calculate, 350+98= Model with appropriate visual (place value counters). Add 100, take away 2.	3999 + 1001 = "Is a column method the best strategy? Why?"	

Expanded and compact column addition with 4 digit numbers, <u>(regrouping</u> <u>10/100)</u>	2634 + 4517 = 2634 + 4517 (commutative) Children can also do the same process when adding 3 numbers.	Use PV cards or drawing: Th H T O 2000 600 30 4 + 4000 500 10 7 7000 1100 50 11 1000 10 10 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Expanded and compact column addition with decimal in money context (including bridging 10p, £1)	f3.24 + f2.58 = Chilren use coins to place on the place value chart.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f3 = 2 4 f2 = 5 8 f5 = 8 2 = f5.82 f3 = 7 4 f2 = 8 7 f6 = 6 1 = f6.61
	Decimal point does not move ! Limit the amount of carrying initially so that the process is clear.		
Applying Conceptual Variation	$21 \\ +34 \\ \\ 21+34 = \\$	 ⊕ In KS1, there are [3digit number] books and in KS2, there are [3d number] books. How many books in total? ⊕ 121 + 334 = 455. Prove it ⊕ Calculate the sum of HTO and HTO. 	Missing digit problems: 10s 1s 0 0 0 ? ? ? 21 34 ? 21 34

.

Statutory Requirements:

 \oplus Add whole numbers with more than 4 digits, including using column addition where appropriate

 \oplus Add numbers mentally with increasingly large numbers

 \oplus Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

 \oplus Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . .?, **ten thousands**, thousands, hundreds, tens, ones, 'is equal to', 'is the same as', inverse, column addition, vertical, 'regroup', expanded, compact, number line, increase, digits, tenths, hundredths, decimal (places), count through zero, **efficient written method**

Building on work done in Year 4, it is crucial that children have a secure understanding of place value; It may be appropriate to revisit the methods taught in Y4 as a starting point.

Objective	Concrete and Visua	Concrete and Visual representations			Imagery →	Abstract
Represent the value of digits in numbers of	Make numbers in the range using place value counters, showing the same number in different ways.Estimate position of numbers on blank number l numbers.		nes with different sta	art/end		
up to 7-digits	0.35	430		830,000	0,15	
and decimals to thousandths		00 00 00 01 01 01 01 01 01 01 01	930,000	1,000,000	0.15	1
		0 0 0	5	10,000,000	t	0.4
Choose	Mental calculation methods	modelled using app	propriate visual, e.g. roun	ding and adjusting on a nu	umber line, bar mode	el
efficient strategies	235 + 2100.1					

Formal method Add 2 decimal numbers with up to 2 decimal places. <u>(with</u> regrouping)	Using place value counters 3.5 + 2.15 0.0 0.0 0.0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fil 4 = 2 9 $fil 4 = 2 9$ $fil 4 = 2 9$ $fil 4 = 2 9$ $fil 4 = 9$ $fil 4 =$
Formal method Compact addition (with regrouping 10/100/1000/ 10,000)	35,272 + 28,345 = TTh Th 30 000 5000 + 20 000 8000 10 000 60 000 3000 Check the answ		clear understanding of place value. TTh Th H T O 3 5 2 7 2 + 2 8 3 4 5 6 3 6 7 7 = 63,617 When working with larger numbers, model the <u>correct</u> <u>placement of the comma</u> . Check children can confidently <u>read these numbers</u> .

ADDITION

- Statutory Requirements:
- \oplus Perform mental calculations, including with mixed operations and large numbers
- \oplus Use knowledge of the order of operations to carry out calculations involving the 4 operations
- ⊕ I can solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- \oplus I can use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Vocabulary

Plus, add, more, total, sum, altogether, make, partition, recombine, how many more is . . .?, **hundred thousands**, ten thousands, thousands, hundreds, tens, ones, 'is equal to', 'is the same as', inverse, column addition, vertical, 'regroup', expanded, compact, number line, increase, digits, tenths, hundredths, decimal (places), count through zero, efficient written method, **order of operations**.

Objective	·					Imagery -> Abstract												
Represent the value of digits						Estimate position of numbers on blank number lines with different start/end numbers.												
in numbers of up to 8-digits and decimals to thousandths	0. 10 10	0.0	0.01	0.32、	0 10	0.0 0.1 0.1	0.0 0.0	0 0.0	0 0.0	0.00	1,80	x, coc	,			1,800	* 2,	00 0.08 0.08 0.1 0.08 0.1 0.08 0.1
Choose efficient strategies	Mental ca 235 + 400		on met	hods	mode	lled u	using	g app	propr	riate vis	sual, e	.g. r	ound	ding	and	adju	sti	ing on a number line, bar model
Add several numbers with different	Using place value counters				Provided	(hoogandhy)		_	3 1	4 5	•	2 4	5 0	0 0	(Check the answer by rounding.		
numbers of decimal places (including				+			+		6 . 3 6 2 draw attention to the role			With a more complex decimal calculation draw attention to the role of <u>0 as place</u> <u>holder</u> to ensure a clear understanding of						
money and measures)		000		(5 1	6 T	•	0 1	1	2		place value.
Adding several numbers with	Concrete and Visual images may still needed for scaffolding Children may use PV grid with PV counters.					0	•		1	2	0	5		3 7 Check the answer by rounding.				
more than 4 digits. <u>(including</u>	Billions		Pla		Va		le	1	Dec	imals			2	3 2	4 3	2	2	2 1 3,668
regrouping 10/100/1000/1 0,000/100,000)	Hundred Billions Ten Billions One	Billion Hundred Millions	Aillions One Million	Hundred Theusands	Theurands One Theurand	Hundred s	Tens	Ones	Tenthi	Hundredthi Thousandthi		+	6	7	8 T	0 1	2	$\begin{array}{r} 2 9 \\ 15,301 \\ + 20,551 \\ 120,579 \end{array}$
		,				,						m	odel	the	<u>corr</u>	ect r	ola	arger numbers, acement of the en can confidently read these numbers.

RECEPTION

Statutory Requirements:

Early Learning Goal – Children should count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Use quantities and objects, add and subtract two single digit numbers and count on or back to find the answer.

Vocabulary

take away, less than, one less, two less . . the difference between, subtract, minus, fewer, decrease, 'is equal to', 'is the same as', leave, how many are left/left over? how many have gone?

Objective	Concrete and Visual representations	Imagery	Abstract
Take away using objects	 Children first learn about subtraction by playing with real objects and pictures. Physically taking away and removing objects from a whole (e.g whole group of 6). "Count how and the two are taken away." Represent subtraction using different representations (ten frames, Numicon, cubes and other items such as beanbags could be used). Children should begin to construct simple number sentences verbally and with pictures initially before moving onto formal recording. Four bean bags take away three bean bags leaves one bean bag. 4 - 3 = 1 	 Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. 4 - 3 = 1 A - 3 = 1 	Part-whole model. 4-3= 4-3 2 3 4 3 2 3 2 3 4 3 2 3 2 3 3 4 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
Take away (a small amount) by counting back	 Practice counting backwards from 10 through song and nursery rhymes. Counting back (using bead string, number lines or number tracks) children start with 6 and count back 2. Record number sentence using -, =	Children to represent what they see pictorially	Show the backwards jumps on a number line.
Find 1 less, 2 less, 3 less	 Show subtractions in various context, using different vocabulary. Maria has 3 ted Anna has 2 less. Show me on your finger 2 less than 10. Demonstrate 2 fingers down, counting back 1 for each finger: 10 (whole), 9, 8 Encourage childrne to know the answer without counting (subitising). 	idies, 👹 🛣 🔏 🧩	1 less than 8 is 7 8 in my head, count back 1 is 7 2 less than 8 is 6 8 (7, 6) 3 less than 8 is 5 8 (7, 6, 6) 0 1 2 3 4 5 6 7 8 9 10

Statutory Requirements:

- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Represent and use number bonds and related subtraction facts within 20
- Subtract one-digit and two-digit numbers to 20, including zero
- Solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems.

Vocabulary

take away, less than, subtract, minus, fewer, decrease, **the difference between**, **number bonds,** 'is equal to', 'is the same as', leave, how many are left/left over? how many have gone? **number line, how many more to make..?, how many more is...than..?, how much more is..? how many fewer is...than..?, how much less is..? inverse,**

Objective	Concrete and Visual representations	Imagery	Abstract
Take away using objects.	Act out the maths story with concrete $g-4=5$ representations (objects, fingers,	Draw the representation of a subtraction, cross out the	 Recall subtraction facts within 10.
	counters) 6 – 2 = 4	XXXX Correct	 Progress to facts up to
	7 people are on the bus. 1 is getting off at the next stop. 8-3=5	amount. E.g. 4-3	20.
	How many will be left on the bus then? $7-5=2$	XXX	
Count back to subtract small		Draw a blank number line to work out a subtraction question, label the jumps	 Recall 1 less, 2 less, 3 less than (any 2digit number)
numbers.	10-1=9 Revise counting backwards from 10. Progress to count backwards from 20 and beyond using marked number track or number line.	Correctly.	
See how	Show 5 beads on a bead bar. Count on 2 more. What number sentence can we write?	Show what this will look like on a number line.	Missing numbers
subtraction 'undoes'			7 - 3 = 🛛 🗆 = 7 - 3
addition		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	7 - 🗆 = 4 4 = 7 - 🗆
	where we started! $\Box - 2 = 5$		□-3=4 4=□-3
	13 + 2 = 15	-1 -1	□-□=4 4=□-□

Represent and use number bonds and related subtraction facts within 10 Part – Whole model. (Teach + and – together)	Model how to use part whole model, starting with the whole amount, one part being taken away, how many left is part 2? Similar arrangement of 2 colours of items e.g. in egg box 10-frame, cubes or with Numicon. Write add and subtract number sentences for each set. Vary the way = sign being placed. $10-6 = 4$ $4 = 10 - 6$ $10-4 = 6$ $6 = 10 - 4$ $4+6 = 10$ $10 = 4 + 6$ $6+4 = 10$ $10 = 6 + 4$	Children to draw the concrete resources they use. The bar model can also be used.
Finding the difference by counting on Find change by counting on	 Calculate the difference between 8 and 5, using cubes, Numicon or Cuisenaire rods, other objects Finding change from 10p after spending 8p in the shop. It's crucial that children understand the value of the coins and knowing that 1 ten is the same as 10 ones. Demonstrate using the money line and count on from 8p (doing 2 hops). 	 Find the difference between 7 and 11 using a number line. Find the difference between 7 and 11 using a number line. Recording by - drawing jumps on prepared lines - constructing own lines, if appropriate Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate. Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference.

Υ		_		_
V	E	Λ	D	7
T	E.	А	n	2

Statutory Requirements:

- Solve problems with subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures and apply their increasing knowledge of mental and written methods
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
- Subtract numbers using concrete objects, pictorial representations, and mentally, including:
 - a two-digit number and ones,
 - a two digit number and tens,
 - two two-digit numbers and
 - subtract three one-digit numbers
- Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, 'is the same as', leave, how many are left? how many have gone? how many more to make..?, how many more is... than ..?, how much more is..? inverse, partition, recombine, hundred

Children build on the learning in Y1 by initially using a number line to take away and then progress to using a number line to show the difference with larger numbers; including crossing tens boundaries.

Objective	Concrete and Visual representations	Imagery	Abstract
Mental strategy Subtract a single digit from a 2-digit number by bridging multiples of ten. TO - O	33 – 5 = Take away 5 in 2 steps. Make a multiple of 10 first.	 Draw the 2 steps on a bead line to work out the subtraction. Label the jumps correctly as shown here. 	32 - 6 1 2 3 4 5 6 7 8 9 0 1 12 13 14 15 6 7 8 9 0 2 2 2 3 24 25 20 27 28 29 30 3 3 3 3 4 35 36 37 38 39 40 4 4 42 43 44 45 46 47 48 49 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8 5 9 60 6 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 70 7 1 72 73 74 75 76 77 78 79 80 8 8 82 83 84 85 86 87 88 89 40 9 9 9 9 00 2 9 9 9 4 9 5 9 6 9 7 9 8 9 100 2 6 30 32 - 4 - 2

Mental strategy Subtract by counting on. Finding the difference.	27 12 15 15 ? ? 15 ? 15 ? Revisit the concept of finding the difference from Y1. Using cubes and drawing of the bar model to show relationship between + and – (using words 'whole/parts'). Include spatial reasoning estimates. 112 15	When the difference is small, count on to find the difference on a bead line or number line. 17 - 15 = 2 53 - 47 30 35 40 45 47 50 $53106 - 90 =106 107 108 108 109 1$
Mental strategy Find change by counting on	Laura has 20p. She spends 15p on an apple in the school tuck shop. How much does she have left? $15p + \square = 20p$ 0 $5p$ $10p$ $15p$ $15p$ $15p$ $17p$ $18p$ $19p$ $20p15p$ $15p$ $17p$ $18p$ $19p$ $20p15p$ $15p$ $17p$ $18p$ $19p$ $20p$	- Find change from 50p amount spent change 5 10 15 20 25 30 35 40 45 50
Mental strategy Subtract 20, 30, 40, 50 from two- digit numbers TO – 10s Subtract near multiples of 10.	$\frac{1}{25} \frac{1}{27} \frac{1}{28} \frac{1}{17} \frac{1}{28} \frac{1}{17} \frac{1}{28} \frac{1}{17} \frac{1}{28} \frac{1}{17} \frac{1}{28} \frac{1}{17} \frac{1}{18} \frac$	Use 100 squares, move like a spider up to subtract 10s. Recognising the ten digit and the one digit pattern as counting. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 70 80 60 61 62 63 64 65 66 7 68 59 60 61 62 63 64 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 91 91 91 92 93 94 95 96 91 93 93 93 93 93 93 93 93 93 93 93 <

Mental strategy Subtract 2 digit numbers by counting back. TO - TO	 Revise counting backwards from 100. 54 - 23 Partition 23. Draw out that we can count back 20, and then subtract 3. Count back 20 in 10s from 54 (spider): 44, 34 Count back 3 in 1s from 34 (frog): 33, 32, 31 Record 54 - 23 = 31 	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59 60 61 62 63 64 65 66 67 68 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	or in 2 jumps of 10), label land more. We know 5 - 4 is one, so need to count back	0 45 - 4 is 41. So we still don't
(preparing for formal method) Subtract 1 digit number from a multiple of 10 TO - O	15 – 6 Pupils s also tak the sam	20 – 4 exchanging 1 ten to ten ones, then take 4 ones away hould identify that they can the away from the tens and get the answer. This reinforces their dge of NB to 10 and develops	 Exchange 1 stick (ten) with 10 ones. Draw and cross out 4 ones after exchanging. 	20 - 4 = 10 + 10 - 4 = 10 + 6 = 16 15 - 6 = 10 + 5 - 6 = 4 + 5 = 9
Subtract 2 digit number from a 2 digit number. TO – TO <u>Without</u> <u>exchanging</u>	54 – 22 Use Dienes to represent number 54. Then take away ones (make 22). Count what's left.	v 2 tens and 2	Draw tens and ones on a place value chart. Cross out 1 ten and 3 ones (make 13) and count what's left. 34 – 13	34-13 30+4 <u>- 10+3</u> 20+1 = 21
Subtract 2 digit number. TO – TO <u>With</u> <u>exchanging</u>	41 - 26	10s 1s ► 25	Represent the base 10 pictorially, show the exchange clearly.IOs1sIdeal the base 10 pictorially, show the the clearly.Ideal the base 10 the base 10 <b< td=""><td>$\begin{array}{r} 40 + 1 \\ -20 + 6 \\ = 10 + 5 \end{array}$</td></b<>	$\begin{array}{r} 40 + 1 \\ -20 + 6 \\ = 10 + 5 \end{array}$

÷

Statutory Requirements:

- Subtract numbers mentally, including:
 - a three-digit number and ones,
 - a three-digit number and tens,
 - a three-digit number and hundreds,
 - a three-digit number and thousands
- Subtract numbers with up to three digits, using formal written methods of column subtraction where appropriate
- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value, and more complex subtraction.

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, 'is the same as', leave, how many have gone? how many more to make..?, how many more is... than ...?, how much more is...? how many fewer is...than ...?, how much less is..? inverse, partition, recombine, hundred, column method

It is essential that this builds on previous learning and their knowledge and understanding of place value. Formal method should not replace effective mental strategies and at all stages children should be encouraged to use their number sense to decide on the most appropriate methods.

Objective	Concrete and Visual representations	Imagery	Abstract
Mental strategy	Subtract by counting up (answers less than 20) 70-56 = +4	Subtract by counting up (answers more than 20) 67 - 45 = 5 + 10 + 7 = 22	Count up in their head without using a visual
Subtract 2 digit number by counting	56 60 70	+5 +10 +7 45 50 60 67	support.
up. TO - TO	Jump from smaller number to the next multiple of ten first,then to the bigger number.Add up all the jumps: $10 + 4 = 14$ so $70 - 56 = 14$ Extend to subtracting by counting up to include numbers oneither side of 100. $106 - 90 = 10 + 6 = 16$	106 - 90 = 106 90	203 - 194 203 194
НТО - ТО	136 - 87 =Jump from smaller number to the next multiple of ten first, then to 100, then the bigger number.Add up all the jumps: $3 + 10 + 36 = 49$ So $136 - 87 = 49$ $87 90$	+10 + 36 + 10 100 136	Mentally work out the difference: 6 + 3= 9

HTO – HTO	162 – 135 = 5 + 20 + 2 = 27	Count up to find the difference between	
	+20	amounts of money	
Find a	+5 +2	A computer game costs £18. So far Katie has saved up £7.55. How much more does she need to save to be able	
difference		to buy the game?	
between pairs		- +£10	
of	135 140 160 162	+5p +40p	
numbers			
within the	Jump from the smaller amount to the next multiple of 10p,	£7.55 £7.60 £8 £18	
same century	then to the next pound, finally to the bigger amount.	£18 - £7.55 = £10.45	
	Add up all the jumps. 5p + 40p + £10 = £10.45		
Formal	47 – 25	T U Use place value cards to help	ТО
method	Dienes can be replaced by place value	40 7 partition and use a place value grid to help record.	40 7
Expanded	counters. Physically move the tens	· 20 5	- 20 5
Column subtraction	and ones to take away the correct	20 2 = 22	20 2 = 22
(without any	amount.		20 2 - 22
exchanging)	* Modelling practical alongside formal written initially.	Children draw represent	
6.16.16.18.18/	* Move to formal columnar strategy using labelled columns and	the base 10 pictorially. Cross out the correct	
	starting with numbers not requiring exchange before strategy and	amount of tens and ones	
	understanding is secure.	to subtract 25.	
	346 – 123 =	H T O Children draw	Н Т О
	Dienes can be replaced by	represent the base	300 40 6
	place value counters.	📄 💊 💊 10 pictorially. Cross	- 100 20 3
		out the correct	
		amount	200 2 0 3 = 223
	000	H T U Use place value	
		300 40 6 cards to help	
	(146 - 16) * When/if children are secure with this then they can be exposed to	– 100 20 3 partition and use	
	exchanging using concrete resources initially.	a place value grid	
	Start with single exchanges.	200 3 = 223 to help record.	
Expanded	262 – 154 H T O	Draw Dienes. Exchange 1 ten to 10 ones.	Н Т О
Column			200 60 12
subtraction			
(with a single			- 100 50 4
exchange)		V	
0-7			100 0 8 = 108

÷

Statutory Requirements:

- Subtract with up to 4 digits using the formal written methods of column subtraction where appropriate _
- Estimate and use inverse operations to check answers to a calculation
- Solve subtraction two-step problems in contexts, deciding which operations and methods to use and why

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, inverse, partition, recombine, hundred, is equal to, 'is the same as', leave, how many have gone? how many more to make..?, how many/much more is... than ..?, how many fewer/much less is... than..?, number bonds, column method, thousand more/less, expanded, compact, estimate, efficient

It is essential that this builds on previous learning and their knowledge and understanding of place value. The methods taught in Y3 should be the starting point and concrete resources and pictorial representations remain essential. Numbers will increase in size and the children will be exposed to more exchanging. Formal method should not replace effective mental strategies and at all stages children should be encouraged to use their number sense to decide on the most appropriate methods and use rounding to estimate answers.

Objective	Concrete and Visual representations	Imagery	Abstract
Mental strategy Subtract 3 digit number by counting up. HTO - HTO	Review on Mental strategy from Y3 before progress to: Find a difference between pairs of numbers with different century 402 - 356 = +40	Jump from smaller number to the next multiple of ten first, then to the next hundred, finally to the greater number. Add up all the jumps: 40 + 4 + 2 = 46 so 402 - 356 = 46	Count up or down in their head without using a visual support. 503 – 15 304 - 199 2001 - 1950 2001 1950
Formal method Expanded and compact subtraction of 3 digit numbers. <u>With a single</u> <u>exchange</u>	 232 - 114 H T O - Model writing the formal method alongside the practical example. - Take care with choice of number initially. Avoid examples where a mental strategy is more appropriate. Exchange 1 ten to 10 ones Take away 114 When/if children are ready, progress to example of subtraction of 4 digit numbers with one exchange. 	Drawing of base ten imagery, indicating the exchange and cross out the correct amount. H T O O O O O O O O O O O O O O O O O O O	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Formal method Expanded/ Compact subtraction of 3 digit numbers. With more	234 - 88 $100s 10s 1s$ $1 4 6$ Exchange take away 88	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	нто 2 ² 34 <u>- 88</u> <u>146</u>
With more than one exchange.	Progress to examples of HTO – HTO with 2 exchanges, following the same steps. Model writing the formal method alongside the practical example. E.g. 513 – 238 * estimate by rounding to check the answer.	HUNDREDS TENS ONES 400 100 13 200 30 8 200 70 5 00 100 0 100 13 0 100 10 10 200 30 8 100 10 10 100 100 10 100 100 10 100 100 10 100 100 10 100 100 10 100 100 10 100 100 10 100 100 10 100 100 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	H T O $45^{10}1^{13}$ -2 3 8 2 7 5
Expanded column subtraction of decimal numbers in money context. <u>(without</u> <u>exchanging)</u>	I have £86.75 in the bank and a pair of shoes costs £35.42. Can I afford it? How much money will I have left if I buy the shoes? * Be mindful of number choice here! Whenever possible, children should be encouraged to use mental strategy and their knowledge of number facts before carrying out formal (column method)	Image: Constraint of the second se	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Applying Conceptual Variation	How much m	oro did Pai spond?	g digit problem 3 9 6 6 0 5

Statutory Requirements:

- subtract whole numbers with more than 4 digits, including the use of column subtraction
- Subtract numbers mentally with increasingly large numbers
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, 'is the same as', leave, how many have gone? how many more to make..?, how many more is... than ..?, how much more is..? how many fewer is...than..?, how much less is..? inverse, partition, recombine, hundred, column method, thousand more/less, expanded, compact

Subtraction in Y5, whole numbers will increase in size, decimal numbers with different decimal places and the children will be exposed to more exchanging. Formal method should not replace effective mental strategies and at all stages children should be given the opportunity to use their number sense to <u>decide on the most appropriate methods</u> and use <u>rounding to estimate answers</u>.

Objective	Concrete and Visual representations	Imagery	Abstract
Mental strategy Subtract pairs of numbers with <u>1</u> <u>decimal place</u> by counting up.	 The average length of a mouse is 9cm. Say that a young mouse is 6.7cm long. How much more is it likely to grow? 1. Jump from the smaller number to the nearest whole number. Draw a hop labelled 0.3cm (use bonds to 10!), 2. Then a jump to the greater number. Draw and label the jump. 3. Add up the jumps on the number line to find the answer. 2.3cm. 	0.3cm 0.3cm 6.7cm 7.0cm 9.0cm	Count up in their head. 21 – 18.7 21 18.7
Subtract pairs of numbers with <u>2</u> <u>decimal places</u> by counting up. Subtract pairs of numbers with different	 Cindy's best long jump this year was 2.96 metres, but today she has jumped a huge 3.24 metres! How much further has she jumped? 1. Jump from the smaller number to the nearest whole number. Draw a hop labelled the difference (use bonds to 100). 2. Then a jump to the greater number. Draw and label the jump. 3. Add up the jumps on the number line to find the answer. <i>£62.38 - £35.29</i> Jump to the nearest whole number. The number of jumps depends on children's knowledge of mental calculation. 	+0.04m +0.04m 2.96m 3m 3.24m <u>£24</u> <u>£235.29</u> £36 £60	* It is important that the children are secure in their knowledge of the decimal place value and knowledge of measuring units (e.g. cm and m).
numbers of decimal places (1 or 2)	6.24 - 4.5 = 4.5 5 6	6.24 12-61=5.9 -0.1 5.9 5.9 6 12	

Mental strategy Subtract 4 digit number from a multiple of 1000.	 A group of people are cycling 4000 miles. So far they have travelled 2658 miles, so over half way. How much further have they got to go? 1. Using an empty number line, hop from 2658 to the nearest 10 (which is 2660), then to the nearest 100 (which is 2700), then to the nearest 1000 (3000) then to the final greater number (4000). Label each jump. The number of hops (jumps) depends on children's knowledge of number bonds to 10, 100, 1000. 2. Add the hops and jumps to find out how much further the cyclists have to go. 	+42mi +300mi +2mi +2mi +40mi 2658mi 2660mi 2700mi 3000mi	+1000mi 4000mi
Formal method Use column subtraction (decomposition) to subtract pairs up to five-digit numbers	 * Use of place value counters and PV grid to scaffold the learning if needed. * Use of PV cards to support partitioning and exchanging to scaffold the learning if needed. * Write as an expanded vertical subtraction where support is needed. * Estimate the answer by rounding. (E: 41000 – 32000 = 9000) 	Ten Troyesnos Troyecorde Bundheds Tens Ones	$3 \times 1_{1}$ 3 $5 \times 1_{2}$ - 3 2 2 4 3 9 1 1 8
Formal method Use column subtraction (decomposition) to subtract pairs of decimal numbers.	 * Use of money or place value counters to scaffold the learning if needed. * Write as an expanded vertical subtraction where support is needed. * Estimate the answer by rounding. (E: £62 – £35 = £27) 	£62.38 - £35.29 Image: Second secon	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Applying	 Decide on the most effective method. Give children a variety of calculation reasons to which method they would use. E.g. 30,001 – 29,999 = ? 24,220 – 1120 = ? Solve measuring and money problems using + and – skills Solve missing number problems, noting the missing quantities as symbols 		2001 - 1950 2001 1950

SUBTRACTION

- Perform mental calculations, including with mixed operations and large numbers
- Use my knowledge of the order of operations to carry out calculations involving the 4 operations
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Vocabulary

take away, less than, subtract, minus, fewer, decrease, the difference between, number bonds, is equal to, leave, inverse, partition, recombine, **ten/hundred thousand**, thousand, hundred, column method, thousand more/less, expanded, compact, **order of operations**.

In YG, children will be consolidating and building on existing strategies that they have been taught so far, with numbers increase in size (up to 10,000, 000), and more complex decimal numbers (up to 3 decimal places) and the children will be exposed to more exchanging.

Formal method should not replace effective mental strategies and at all stages children should be given the opportunity to use their number sense to <u>decide on the most appropriate methods</u> and use <u>rounding to estimate answers</u>.

Formal	Use	Use of concrete resources to support (e.g. place value) if needed												a , 14 - 1 . 9					
Method	Place Value												180,6	99					
Compact subtraction with up to 6 digit numbers	Billions						Thousands			Ones		Decimals		als		-	89,91	49	
	dred as	ě		dred	SUS		dred	sonds	sand	dred s			-	Hundredthi	sendthi			60,79	50
(more than	Hundr	Ten Billiens	One Billie	Hundre	Ten Millions	One Million	Hund Theus	Ten Theu	One Theu	Hundred	Tens	Ones	Tenths	Hune	Thou		Est	timate: 150,000 – 90,000=	= 60,000
<u>one</u> <u>exchanges)</u>																1350			
Compact subtraction with pairs of numbers with different decimal places. (more than	ALCON.													de	10000 - 1000010000 - 10000 - 10000		2	$\begin{array}{rcl} \textbf{02.63} &- \textbf{178.124} = & de \\ \begin{array}{r} 2 & 9 & 1 \\ \hline \mathscr{S} & \mathscr{O} & 2 & . & 6 \\ \hline \mathscr{S} & \mathscr{O} & 2 & . & 6 \\ \hline \mathscr{S} & 2 & . & 6 \\ \hline \mathscr{S} & 2 & . & 6 \\ \hline \mathscr{S} & 2 & . & 6 \\ \hline \mathscr{S} & 1 & 2 & 4 \\ \hline \textbf{124.506} & \textbf{in} \\ \end{array}$	mpty ccimal aces can filled ith zero to ow the ace value each lumn.
<u>one</u> <u>exchanges)</u>																			
Applying		reaso	ns to	whicl	h met	thod t	hey v	voulc		e chilc	dren a	varie	ety of	calc	ulatio	n and the children give			
		E.	.g.			29,99													
		Solve	meas			1120 mone		blem	ns usir	1g + a	nd – «	kills							
				-	-					•			ities a	ıs syr	nbols	х, γ, z.			

÷

RECEPTION

MULTIPLICATION

Statutory Requirements:

Early Learning Goal - Children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Vocabulary

double, halves, the same, lots of, groups of, times (once, twice etc.), multiply, add again and again, repeated grouping, repeated adding, (how many) equal groups, total, is equal to, 'is the same as', counting in 2s, 10s, odd, even

Statutory Requirements:

Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), add again and again, repeated grouping, repeated adding, (how many) equal groups, total, is equal to, 'is the same as', counting in 2s, 3s, 5s, 10s, (forwards from/backwards from), how many times? multiple of, times, multiply, multiply by, repeated addition

Objective	Concrete and Visual rep	resentations	Imagery		Abstract
Understand repeated (equal) grouping and repeated addition		There are 3 equal groups, with 4 in each group. There are 3 equal groups of 4. 3 × 4 4 + 4 + 4		•	3 × 4 = 12 4 + 4 + 4 = 12
Count in multiples of 2, 5, 10 and record number sentences, using X, = symbols	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}$	Children initially count in groups e.g. in 2s, 5s and 10s 10, 20, 30, 40, 50	calculate a given multiplication. 81 22 23 31 32 33 41 42 43 51 52 53 61 62 63 71 72 73 81 82 83	Children can draw images of equal groups (dots, crosses or squares) to 4 5 6 7 8 9 10 14 15 16 17 18 19 20 24 25 26 27 28 29 30 34 35 36 37 38 39 40 44 45 46 47 48 49 50 24 25 58 55 66 60 64 65 66 67 68 69 70 74 75 76 77 78 79 80 84 85 86 87 88 89 90 94 95 96 97 98 99 100	 ⊗ Record as repeated addition initially. 2 + 2 + 2 + 2 = 8 ⊗ Progress to use X and = symbols: 4 lots/groups of 2s → 4 X 2= 8

Statutory Requirements:

- 8 Recall and use multiplication facts for the 2, 3 and 5 and 10 multiplication tables, including recognising odd and even numbers
- Solution Calculate mathematical statements for multiplication within the 2, 5, 10 tables and write them using the multiplication (×) and equals (=) signs
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), add again and again, repeated grouping, repeated adding, (how many) equal groups, total, is equal to, 'is the same as', counting in 2s, 3s, 5s, 10s, (forwards from/backwards from), how many times? multiple of, multiply, multiply by, repeated addition, commutative law

Objective	Concrete and Visual representations	Imagery	Abstract
Find doubles of 2 digit number by partitioning	Double 13 Double 13 10 + 10 = 20 3 + 3 = 6 20 + 6 =	Children to represent the practical resources in a picture	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Show multiplication is commutative using a bar model	It's a good idea to make 2 gro of 3 below this model to show 3 X 2 = 2 X 3 = 6	~	$2 + 2 + 2 = 63 \times 2 = 63 + 3 = 62 \times 3 = 6$
Show multiplication is commutative using arrays	$3 \downarrow \qquad $	of 2 Children draw array using dots or squares, showing equal groups in rows and columns.	$2 \times 5 = 5 \times 2 = 10$ $5 + 5 + 5 = 3 \times 5 = 15$ $3 + 3 + 3 + 3 + 3 = 5 \times 3 = 15$ $3 + 3 + 3 + 3 = 4 \times 3 = 12$ $4 + 4 + 4 = 3 \times 4 = 12$

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), repeated adding, (how many) equal groups, total, is equal to, times tables, Counting in 10s, 100s, how many times? multiple of, multiply, multiply by, repeated addition, scale up, distributive law, commutative law

Objective	Concrete and Visual representations	Imagery	Abstract
Distributive law of multiplication Generate new multiplication facts using known fact	 8 x 3 A range of images show multiplication as repeated addition. 2-colour arrays show distributive 	Children draw image of the apparatus they use. They might label each counter with different value, such as 1, 10, 100, 100 and generate new number facts 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	$8 \times 3 = 5 \times 3 + 3 \times 3$ Begin to draw links with multiples of 10 and 100 through carefully selected variation: $3 \times 8 = 24$ $3 \times 80 = 240$ $3 \times 800 = 2400$ $30 \times 8 = 240$ $300 \times 8 = 240$
Expanded 'grid' method Multiply 2 digit number with a 1 digit number TO x O	x 10 3 x T 10 0 3 4 10 3 10 3 4 4 10 3 4 40 12	Drawing of PV counters or Dienes. 24 x 6 20 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 4 6 120 24 120 +24 = 144

8 Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for 2-digit numbers times 1-digit numbers, using mental and progressing to written methods

8 Solve problems involving missing number problems involving multiplication including positive number scaling problems and correspondence problems where n objects are connected to m objects.

Time tables - Pupils recall x2, x5, x10, x3, x4, x6, ,x8 and x9. For x4 and x8 use doubling to help recall.

8 Recall and use multiplication facts for the 3, 4 and 8 multiplication tables

YEAR 3

Statutory Requirements:

Applying	Investigate the relation	nultiplic	ation a	nd divisi	on using	To st	reng	then	the li	nk		Balancing calculations	
	bar model.				12		between division and						(represented by scales) to show
Courses by al			3	3	3	3	mult	•					commutative law.
Conceptual Variation		itity				use d used ment	used to increase speed and number problems invo mental agility whilst multiplication includin	Solve problems involving missing number problems involving multiplication including positive					
				refer	ring		<u> </u>	Torm	iat.	number scaling problems and correspondence problems where			
	smaller quantity	16 C		22	100	Sec. 17		×		9	3	<u> </u>	
	sinalici quantity	larger quantit	y ÷ sma	aller qua	antity = i	multiple				54	18		n objects are connected to m
		smaller quant	tity x m	ultiple	= larger (quantity		5		45			objects.
		larger quantit	bi A mul	Itiple -	cmaller	quantity			16			20	
		larger quanti	ry – mu	itible =	smaner	quantity						5	

Statutory Requirements:

- Solution Sol
- ⊗ Recognise and use factor pairs and commutativity in mental calculations
- ⊗ Multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- Solve problems involving multiplying, including the distributive law to multiply two-digit numbers by one-digit including positive number scaling problems and correspondence problems where n objects are connected to m objects
- ⊗ Time tables Pupils recall all times tables up to 12 x 12.

Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), total, counting in 10s, 100s, 100os, how many times? multiple of, multiply, multiply by, scale up, distributive law, regrouping, times tables, product of

Objective	Concrete and Visual representations	Imagery	Abstract
Generate new multiplication facts using known fact	5 = 1 × 5 50 = 10 × 5 500 = 100 × 5 5000 = 1000 × 5 * Pupils reinforce x10, x100 and x 1000 through conversions of units of	Distributive law of multiplication	8 x 3 = 5 x 3 + 3 x 3 Begin to draw links with multiples of 10 and 100 through carefully selected variation: 3 x 8 = 24 3 x 80 = 240 3 x 800 = 2400 30 x 8 = 240 300 x 8 = 240
Mental strategies Including memorising all times tables.	Find factors of numbers up to 40 using arrays (e.g. 24) Find factors of numbers up to 40 using arrays (e.g. 24) 24 is therefore a multiple of 1, 2, 3, 4, 6, 8, 12 and 24 and these numbers are called its factors. They are numbers that will go into 24 without leaving a remainder, and they come in pairs, e.g. 6 and 4.	Double 3 digit numbers by partitioning (including exchanging) 226 partition 200 20 6 double 400 + 40 + 12 = 452 recombine X 4 = Double and double again. X 8 by doubling it three times	2 x 113 = 226 4 x 113 = 452 8 x 113 = 904

Formal method Multiply 2 digit	23 × 3 = (Estimate >60)	Drawing of PV counters.	T O 23
number with a 1 digit number TO x O <u>without</u> <u>exchanging</u>	10s 1s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
то х о	23 x 6 (Estimate >120)	100s 10s 1s	expanded method.
<u>with</u> <u>exchanging</u>	100s 10s 1s 000 000 000 000 000	Q 000 000 00000000000000000000000000000	$\begin{array}{c} H & T & O \\ 2 & 3 \\ \hline 1 & 8 & (3 \times 6) \\ \hline 1 & 2 & 0 \\ 1 & 2 & 0 \\ \hline 1 & 3 & 8 \end{array} \xrightarrow{\times 6} \\ \hline 1 & 3 & 8 \\ \hline 1 & 3 & 8 \\ \hline 1 & 1 \\ (expanded) \rightarrow (compact) \end{array}$
Formal method Multiply 3 digit	423 x 6 (estimate > 2400)	Draw the exchange on to the area model:	<u>тh н т u</u> Th H T O 4 2 3 Л 2 3
number with a 1	Children can use base ten apparatus to set out as above, or they can associate each section of the array as an area, as in this 'area model'	400 20 3	423 423 × 6
digit number	400 20 3	2400 420	$18 \frac{\chi 6}{2600}$
НТОхО	6 2400 120 18	$\begin{bmatrix} 2400 & \underline{120} \\ 100 & \underline{10} \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>with</u> exchanging	Children observe and describe 'What's the same and what's different'? among these models		2 5 3 8 'What's the same and what's different'?
Applying	 Investigate the relationship between X and ÷ using bar model. 12 3 3 3 3 		Aai had to swim 23 lengths, 6
Conceptual Variation	and + dsing bar model. 3 3 3 3 Swhat's the calculation? What is the product? 100s 10s 1s 100s 10s 1s ?	$6 \times 700 = 0.6 \times 7 = $ $\otimes \text{ Find product of 6 and 23.}$ $\otimes 6 \times 23 = $ $\otimes W$	mes a week. How many engths did she swim in one veek? Vith the counters, prove that x 23 = 138

- ⊗ identify multiples and factors: all factor pairs of a number, common factors of two numbers
- \otimes Establish whether a number up to 100 is prime and recall prime numbers up to 19
- ⊗ Recognise and use square numbers and cube numbers and their notation
- Solution Section 2018 Sectio
- \otimes Multiply whole numbers and those involving decimals by 10, 100 and 1000.
- Solve problems using multiplication and division using my knowledge of factors and multiples, squares and cubes

Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), (common) multiple of, times, multiply, multiply by, scale up, decimal point, decimal place, factors, square number, cube number, prime number, prime factors,

In year 5 the children begin to multiply bigger numbers and progress to multiplying by 2 digits. However, it is entirely appropriate to revisit and check methods from Y4 to ensure that their place value knowledge and understanding of carrying is secure

Objective	Concrete and Visual representations	Imagery	Abstract
Mental strategies Including memorising all times tables.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Find factors of numbers up to 40 using arrays (e.g. 24)	Use times tables knowledge to find common multiples 1 2 4 5 7 5 10 11 2 13 14 15 16 17 6 19 20 21 22 23 24 25 26 27 28 29 00 31 32 33 34 35 00 37 38 3 40 41 42 43 44 65 46 47 40 49 50 51 52 53 55 56 57 58 59 00
	'Area model' used to show multiplication where numbers are partitioned in different ways	4, 6 24 2, 12 3, 8	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 80 97 98 96 100
Short multiplication	At all stages check that the children understand the process of carrying. If necessary revisit with the use of concrete resources.	300 40 2 7 2100 280 200 10 14	Th H T O 3 4 2 X 7 2 3 9 4 2 1

Use grid		30	4		Area model used			raw the A		del to	×	30	4	
method to multiply pairs of 2-digit	20	600	80	= <mark>68</mark> 0	in stead of PV counters because of the size of the numbers.	Estim	ate by ro	multiplica unding to 600 but	o check t		<u>20</u> 3	600 90	80 12	680 102
numbers	3	90	12	= 102	Green = ones Yellow = tens	answ	±1. (∟.g. ∕	000 but		11 900)				782
Formal method (extended) long multiplication between a pair of 2 digit numbers. TO x TO	Start Child	63 (Estimate over t with this extended dren should initially side. Draw attentic	d method write the	before co calculati	ompact method. Ions used down at	<u>×</u>	2 1 2 4 2 0	4 <u>3</u> 2 (3 0 (3 0 (60 <u>0</u> (60			Th <u>X</u> + 4 	7 6 2 2 1	0 (74	+ x 3) - x 60)
Use long multiplication to multiply a 3-digit numbers by a 2digit number (less than 20) <u>3d × 3d and</u>	243	200 00 200 00	O B B B B B B B B B B B B B B B B B B B	243 x 3 243 x 3	move on to the area model.	2 10	2000	200 400 400	40 80 30	3 6	<u>x</u>	Image: Marked Markowski M	3 2 6 ()	x 2) <u>x 10)</u>
<u>4d × 2d</u>		Ild be confident wi												

MULTIPLICATION

Statutory Requirements:

- ⊗ Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
- Perform mental calculations, including with mixed operations and large numbers
- ⊗ Identify common factors, common multiples and prime numbers.
- ⊗ Use knowledge of the order of operations to carry out calculations involving the 4 operations
- Multiply one-digit numbers with up to 2 decimal places by whole numbers
- Solve problems involving multiplication and division which require answers to be rounded to specified degrees of accuracy

Vocabulary

odd, even, double, halves, the same, lots of, groups of, times (once, twice etc.), (common) multiple of, times, multiply, multiply by, scale up, decimal point, decimal place, factors, square number, cube number, prime number, prime factors,

In year 6 the children begin to multiply bigger numbers and progress to multiplying by 2 digits. However, it is entirely appropriate to revisit and check methods from Y4, Y5 to ensure that their place value knowledge and understanding of carrying is secure.

Objective	Concrete and Visual representations		Ima	gery			Abstr	act	
Mental strategies			2 100 000 210 000	700 000 x 3 70 000 x 3	70 000 x 30 7000 x 30	7000 x 300 700 x 300	700 x 3000 70 x 3000	70 x 30 000 7 x 30 000	7 x 300 000
Including memorising all times tables.			21 000 2100 210 210 210 21 2.1 0.21 0.021	7000 x 3 700 x 3 70 x 3 70 x 3 0.7 x 3 0.07 x 3 0.007 x 3	700 x 30 70 x 30 7 x 30 7 x 0.3 0.7 x 0.3 0.07 x 0.3	70 x 300 7 x 300 7 x 0.03 0.7 x 0.03	7 x 3000 7 x 0.003	Multipli facts fro known f	om a
Formal method Use long multiplication to multiply a up to 5 digit numbers by a 2 digit number	When children start to multiply 3d × 3d and 4d × 2d should be confident with the abstract. However, imagery and concrete resources can be used to reason and explain the method.	etc., they 243× 243× 243 × 65 1215 -80	65 6	200		0 3 180 20 15	$\frac{4}{5}$	$\begin{array}{c} 2 & 3 \\ X \\ 6 & 9 \\ 6 & 2 \\ 3 \\ x \\ x$	1 4 2 3 4 2 4 8 0 2 2

Formal method Multiply a decimal number by a 1 digit number	When multiplying decimals, initially begin by using the extended method. As confidence grows children may find other strategies <u>e.g.</u> multiply by 10/100 to eliminate decimal point and then adjust the answer.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Formal method Long multiplication to multiply 3- digit then 4- digit numbers with decimals by numbers between 10 and 35;	36.21 x 17 Use rounding to approximate. Estimate the answer is about less than 36 x 20 = 720	$36.21 \\ x 17 \\ \frac{41}{253.47} \\ 362.10 \\ \frac{1}{615.57} $	
Applying Conceptual Variation	Long multiplication $124 \times 26 \text{ becomes}$ $124 \times 26 \text{ becomes}$ $124 \times 26 \text{ becomes}$ 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 4 1 2 4 1 2 4 1 1 2 4 4 1 1 2 4 4 1	1 6 6	

RECEPTION

Statutory Requirements:

Early Learning Goal - Children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing

Vocabulary

odd, even, double, halves, the same, lots of, groups of, share – share equally, divided by, left, left over

Early division should be introduced in EYFS predominately using language such as halving and sharing. To develop an understanding of the concepts children should use concrete resources and see representations of division as both grouping and sharing.

Objective	Concrete and Visual representations	Imagery	Abstract
Understand halving as dividing into 2 equal parts.			
Understand division as sharing	Share a quantity into 2 equal halves using objects.	Draw pictures of sharing a quantity into 2 equal parts.	3 3
Understand division as grouping	Mum had 6 socks. She grouped them into pairs. How many pairs did she have? Now try again with 10 socks. Other scenario can be put pupils in groups of how many group do we have?	Put flowers in groups of 3, how many groups?	

- + Solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
- + Recognise, find and name: one half (½) as one of 2 equal parts of an object, shape or quantity.
- + Recognise, find and name: one quarter (¼) as one of 4 equal parts of an object, shape or quantity.

Vocabulary

YEAR 1

odd, even, double, halves, **quarter, three quarters,** the same, lots of, groups of, share equally, **bar, altogether, divide, split, array** divided by, left, left over

Continue from EYFS, Y1 children continue to develop an understanding of the concepts using concrete resources and imagery representations of division as both grouping and sharing. Working with numbers up to 20.

Objective	Concrete and Visual representations	Imagery	Abstract
Understand halving as dividing into 2 equal parts.			What is half of this amount?
Recognise and make one-half $(\frac{1}{2})$ in a range of ways (discern examples from non- examples); identify one quarter $(\frac{1}{4})$	 Half (¹/₂), quarter (¹/₄) of a shape/capacity/length: fold papers, shapes, strings, playdough in half, then fold in half again to create quarters Share number of objects into 2 equal parts to find ½, 4 equal parts to find ½. Use 10-frame, and cubes. Using a bar, pupils begin to explore halving and then subsequent quartering as a way of sharing and using a bar (piece of paper) folder in half to create two groups onto which items can be drawn or placed. This extends to quarters and sharing this into 4 groups. 	Which is ½ Which of these diagrams are ¼ blue?	Colour half of each whole shape:

DIVISION and FRACTION

Use halves and quarters as counting numbers, going over 1	-14 -14 -14	$\begin{array}{c ccccc} + + + + + + + + + \\ 0 & \% & 1 & 1\% \end{array}$	1 1 1 1 1 1 2 2½ 3
Understand division as sharing	 Physically Share objects into groups using circles, hoops or boxes. Image: the second se	Draw pictures of sharing a quantity into 2 equal parts. 6 shared equally by 2 is 3. Draw images to solve problem	6 ÷ 2 = 3 3 3
Understand division as grouping	Physically group items and count in groups. Socks, cubes Other scenario can be put pupils in groups of x. How many group do we have? "There are x altogether." "There are x groups."	Solve division problems by drawing dots/flowers. Ring the dots to group flowers in groups of 3, how many groups?	$6 \div 2 = 3$ 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 $6 \div 2 = 0$ $0 = 6 \div 2$ $6 \div 0$ 2 + 3 $3 = 6 \div 0$ $0 \div 2 = 3$ $3 = 0 \div 2$ $0 \div 2$ 0 00
Understand x and ÷ are opposite. Use arrays and bar model to represent division	Image: Sharing 12 in 4 equal groups, Thre are 3 in each group 4 lots of 3 make 12. Image: Sharing 12 in 4 equal groups, 12 put in groups of 4, there're 3 groups. 3 equal groups of 4 make 12.	practical and drawing of groups , arrays and bar model.	$4 \times 3 = 12$ $3 \times 4 = 12$ $12 \div 3 = 4$ $12 \div 4 = 3$

Statutory Requirements:

- + Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables fluently, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the 2, 5 and 10 multiplication tables and write them using the multiplication (x), division (÷) and equals (=) signs
- + Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- + Recognise, find, name and write 1/3, ¼, 2/4, ¾ of a length, shape, set of objects or quantity
- ✤ Write simple fractions : ½ of 6=3
- + Recognise equivalent fractions 2/4=1/2.

Vocabulary

odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array divided by, left, left over **division, chunks, multiples, fraction**

Follows on from the learning in year 1 with multiplication and is again linked to the use of arrays to develop greater conceptual understanding. The focus should be around using divisors of 2,5 and 10 (before progressing to 3).

Objective	Concrete and Visual represent	ations	Imagery	Abstract
Compare ½ and ¼, learning that 2/4 = ½	Fold a strip of paper in half and then in half again. Label each equal section as ¼. Observe and describe the relationship between ¼ and ½. Can you prove that two quarters (2/4) is the same as a half?	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Use halves and quarters as counting numbers, going over 1. Find ¾ of shapes and numbers	-1,4 -1,4 -1,4 -1,4	The children car	0 ½ 1 1½ have ¾ of the cupcakes. Estimate the	2 2½ 3 position of $\frac{1}{4}, \frac{1}{3}$ and $\frac{3}{4}$

Find ½, ¼ of any numbers less than 40 using arrays, bar model, sharing, grouping. Use sharing and grouping for division. Relate division to finding unit fractions of quantities	Practically sharing or grouping objects to find a ½ or a ¼ of an amount less than 40. Encourage children to arrange the objects in lines or arrays as they group and share ••••••••••••••••••••••••••••••••••	000000000000 00000000000 Draw array to find half (e.g. of 24) Or quarters 00000 00000 00000 00000 00000 Find 15 ÷ 3 or 15÷5	Record $\frac{1}{2}$ of 20 = 10 $\frac{1}{4}$ of 20 = 5 Children can generate number facts from known number. Eg. Half of 6 is 3 so half of 6 tens is 3 tens. Ect. $15 \div 5 = 3$ $15 \div 3 = 5$
Use arrays and bar model to represent the inverse	Revise this inverse concept from Y1. Ask children to comment on similarities and differences between these 2 models, using appropriate vocabulary Solve 1 step problems using practical and drawing of groups , arrays and bar model.	5 5 5 5	? x ? = 20 20 = ? x ? 20 ÷ ? = ? ? ÷ ? = ?
Mental strategy Find half of 2 digit numbers by partitioning (no exchanging)	Half of 86 Quarter of 84	Drawing of dienes to show the practical sharing. $\frac{-2}{2} + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	86 80 6 40 43 43 43 43 43 43 43 43 43 43 43 43 43
Division on a number line. (chunking)	Explore division as grouping with bead bar or cubes in a row and move towards showing this as a number line: Use fingers to count in 2s. 1. Count in multiples on your fingers 2. Stop at the large number 3. How many fingers is the answer?	Using a number line with marked divisions, count back under the number line to show the groups of 2: number 'chunks.'	Represent this using written symbols and begin to show this as a written calculation: 2 x 9 = 18 18 ÷ 2 = 9.

Applying Conceptual Variation	How many cars are needed to take 18 children to the match? 4 children per car.	nodelled with covered on: how many [divisors] 20 dots. How many rows?	Missing number problems.

- + Recall and use multiplication and division facts for the 3, 4 and 8 x tables
- Write and calculate mathematical statements for division using the multiplication tables they know, including 2-digit divided by 1-digit using mental and progressing to formal written methods
- Solve problems involving division, including missing number problems, or positive number scaling problems and correspondence problems where n objects are connected to m objects.
- + Recognise, find and write fractions of a discrete set of objects using Unit and non-unit fractions with small denominators
- + Recognise and show equivalent fractions
- ✤ Compare, order and +/- unit fractions, fractions with same denominators

Vocabulary

odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array divided by, left, left over division, chunks, multiples, fraction **partitioning**, **recombining**, **divisor**, **dividend**, **quotient**

In order to access the curriculum at this stage it is essential that the children are developing fluency with their times tables as they will be beginning to work with a wider range of divisors: x2, x5, x10, x3, x4, x6, ,x8 and x9. Strategies should be supported heavily at the beginning with concrete resources and pictorial representations.

Objective	Concrete and Visual representations			Imagery			Abstract
Simple	True or false?				1		Identify fraction of
unit/non -unit fractions		14	1/4	1/4	1/4	1⁄4	shaded shape; position fractions on a
represented in a range of		8	$\frac{1}{8}$ $\frac{1}{8}$	$\frac{1}{8}$ $\frac{1}{8}$	$\frac{1}{8}$ $\frac{1}{8}$	$\frac{1}{8}$ $\frac{1}{8}$	number line;
ways;	$\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$	-14					
Different fractions	Compare 1/6 and 1/8	Semmens 24 and 6/0			-		
compared including	+	Compare ¾ and 6/8 Use fraction cards to show equivalence and compare			Est	imate the	position of $\frac{1}{3}$, $\frac{1}{5}$ and $\frac{7}{10}$
equivalence	6 18 8	fractions			0		• 1

Counting in ¼, ½ and 1/10. Fractions as counting numbers going over 1.		$\frac{7}{10} \frac{8}{10} \qquad \qquad 1\frac{2}{10} 1\frac{3}{10}$
Finding half of a given number by partitioning <u>(including</u> <u>exchanging)</u>	Using partitioning and recombining, Half of 96	Draw Dienes to accompany recording 96 80 + 16 (partition in a different way) 40 8 (half each part) 48 (Recombine) 1/2 of 96 = 48 Represent ½, ¼ using bar model $60 \div 4 = 15$ 60 15 15 15 15
Divide by 10 Finding 1/10 (one tenth) of a number.		'60 in four equal parts' Using a place value slider, pupils begin to explore how the values of digits change when dividing by 10.
Chunking method (division on a number line)	0 3 6 9 12 15 45 28 ÷ 7 = 4 Encourage children to use their times table knowledge.	$45 \div 3 = \square$ $10 \times 3 = 30$ $15 \ 1 \times 3 = 3$ $12 \ 1 \times 3 = 3$ $10 \times 3 = 30$
2 digit number divided by a single digit	28 7 7 7 7 'How many 7s in 28?'	$ \begin{array}{c} 1x^{3} = 3 \\ 1x^{3} = 3 \\ 1x^{3} = 3 \\ 1x^{3} = 3 \end{array} $ $ \begin{array}{c} 15 \\ 5 \times 3 = 15 \\ 15 \\ 1x^{3} = 3 \end{array} $
Formal method <u>2d ÷ 1d</u> (no exchanging)	48 ÷ 4 =	Draw the concrete base 10 resources 4 4 4 8

	342÷3	000	QQQQ _ 00000 Q0	Children to be able to
Formal method	10s 1s		10s 1s	make sense of the place value counters and write
2d ÷ 1d (with exchanging)	10s 1s 0 000 0 000	• = 14 • • • • • • • • • • • • • • • • • •	0 0000 0 0000 0 0000	calculations to show the process. $42 = 30 + 12$ $30 \div 3 = 10$ $12 \div 3 = 4$ 10 + 4 = 14 Begin to record formally
2digit number divided by 1 digit <u>with</u> <u>remainders</u>		 How many 3s are in 20? 13 ÷ 4 	Children to represent the lollipop sticks pictorially. 3 groups of 4, with 1 left over' 4 4 4 4 4 4 4 4	 3 4 ¹2 13 ÷ 4 = 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
	Cuisenaire rods, above a ruler ca	in also be used.	8 8 8 2	
Applying	24 dots.		Positive Integer Scaling An example of a concrete problem here or amount can be 'scaled up' or 'scaled	down' using an integer.
Conceptual		c2	Here is a square. Its sides are 12cm Draw this shape 3 times smaller.	in length.
Variation	How many row	5:	I have four £1 coins. H do I have if I have eigh more.	· · ·

•

Sta	tutory Requirements:
÷	Recall multiplication and division facts up to 12 x 12
÷	Use place value, known and derived facts to divide mentally, including dividing by 1
÷	Solve problems involving dividing a three-digit number by one-digit and number using a formal layout
÷	Recognise and show equivalent fractions
÷	Decimal equivalent of ¼, ½, ¾
÷	Compare, order and +/- unit and non-unit fractions, fractions with same denominators
1000	abulary
odd,	, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array, left
over	, division, divided by, chunks, multiples, fraction partitioning, recombining, divisor, dividend, quotient, short-division, algorithm,
prim	re number, long-division, factor pairs, square

Division in year 4 builds on the informal method taught in year 3. It is crucial that the children are becoming increasingly fluent with their times table knowledge and associated facts. As they begin to divide using bigger 'chunks' it is also essential that their place value knowledge is secure, in order to readily access the concepts involved.

Objective	Concrete and Visual representations	Imagery	Abstract
Find equivalent fractions, calculate fractions of amounts (unit and non-unit fractions	$\frac{1}{4}$	$ \begin{array}{c} 1 & 36 \\ 2 & 18 \\ 3 & 36 & 9 \\ \end{array} $	
Find all factors pairs	Systematically, using times table knowledge. Record as the 'factor bu		

Fraction of quantities shown using PV counters and bar models	180÷3=60 180÷0 180 180 180 180 180 180 180 180 180 18	$\frac{3}{4}$ of 6	60		15	60 15 ³ / ₄	15	
Divide by 10, 100 Finding 1/10, 1/100 of a number.	Using a place value slider, pupils b	egin to explore	how the value	es of digit	ts change whe	n dividing by	100.	Th H T U 10 100 1000 3 6 8
Short division formal method	Using place value counters to	100s	10s	1s	Represent the pictorially.	place value cou	unters	123
HTO ÷ O	group. 615 ÷ 5 How many groups of 5 hundreds can you make with 6 hundred counters? Exchange 1 hundred for 10 tens.		2	3 0			3	5 6 ¹ 1 ⁵ 1 1 6 2
ThHTO ÷ O	3,486÷3	•				2	5	3 3 4 ¹ 8 6
Applying	This image shows 4 x 6	-	image to show	4 x 7	This image sho			
Conceptual Variation	$\begin{array}{c} \star \star$				24 4 4 4 4	im cal	e the age to culate : 12	

- + Identify multiples and factors, including finding all factor pairs of a number, common factors of two numbers, know and use the vocabulary of prime numbers and establish whether a number up to 100 is prime
- + Multiply and divide numbers mentally drawing on known facts
- + Divide numbers up to 4 digits by a one-digit number using a written method and interpret remainders appropriately for the context
- + Divide whole numbers and those involving decimals by 10, 100 and 1000. Read and write decimal numbers as fractions
- + Compare and order fractions (with denominator is a multiples of same number)
- + Identify, name and write equivalent fractions
- + Recognise and convert between mixed numbers and improper fractions
- + +/- fractions (denominator is a multiples of the same number)
- + Multiply proper fractions and mixed numbers by whole numbers
- + Recognise '%' and write percentages as a fraction (denominator '100') and a decimal
- + Solve problems knowing decimal and % equivalents

Vocabulary

odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array, left over, division, divided by, chunks, multiples, fraction partitioning, recombining, divisor, dividend, quotient, short-division, algorithm, prime number, factor pairs, square, place value holder, **integer**

In year 5 the children will begin to work with bigger numbers and a wider range of divisors. They will need to spend time the challenging concepts taught in year 4, particularly with exchanging. It is appropriate to continue to use place value counters as a mechanism for support.

Objective	Concrete and Visual representations Imagery	Abstract
Compare and order fractions, find equivalent fractions. +/- fractions	Fraction cards used to compare, show equivalence and model calculations.	5/6 > 2/3 $1/3 = 4/12$ $1/4 = 3/12$ $1 - 2/3 = 1/3$ $1 - 1/6 = 5/6$

Add fractions	Example: ¾ + ⅓ Image: Image: № + ⅓ Image: № + ⅓	$\frac{1/3 + \frac{1}{4} = \frac{4}{12} + \frac{3}{12}}{\frac{3}{4} + \frac{1}{2}} = \frac{5}{4} = \frac{1}{4}$
Find decimal equivalents for quarters, fifths and tenths, relating to division.	Dividing length of a metre ruler into two/four/five equal parts.	
Formal method Short division without a remainder	Revise on short division, formal written method, introduced in Y4. Exchange when/if needed and Group the place counters into groups of [divisors] 4 until all used up or a remaind groupings in the algorithm with the number of groups and the remainder. $4\overline{132} \qquad \qquad$	er is left. Show these 750 ÷ 150 750 0 150 150 150
Short division with integer remainders	Draw PV counters to support recording 2 1 2 1 3 6 3 7	

Statutory Requirements:

- Divide numbers up to 4 digits by a two-digit number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding as appropriate for the context.
- ÷ Divide numbers up to 4 digits by a two-digit number using the formal written method of short division as appropriate.
- + Use common factors to simplify fractions, common multiples to express fractions in same denominator
- + Compare, order and +/- fractions including fractions>1 and fractions with different denominator
- ÷ x simple pairs of proper fractions (answer in simplest form)
- ÷ ÷ proper fractions by whole number.
- ÷ x/÷ nos by 10, 100, 1000
- + Solve problems involving relative sizes of two quantities (missing values using integer x/+ facts)
- + Solve problems involving the calculation of % and the use of % for comparison
- + Solve problems involving similar shapes where the scale factor is known or can be found
- + Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

Vocabulary

odd, even, double, halves, quarter, three quarters, the same, lots of, groups of, share equally, bar, altogether, divide, split, array, left over, division, divided by, chunks, multiples, fraction partitioning, recombining, divisor, dividend, quotient, short-division, **long division**, algorithm, prime number, factor pairs, square, place value holder, **integer**

Objective	Concrete and Visual representa	tions	Imagery	Abstract
Add and subtract fractions with different denominators	Fraction cards to show conversion into com	nmon denominators and calc	ulating over whole-number boundaries.	Example: $2\frac{1}{3} - \frac{3}{6}$

Long division with	432 ÷ 15 becomes	432 ÷ 15 becomes	432 ÷ 15 becomes
remainders	2 8 r 12 <u>Integer</u> 1 5 4 3 2 <u>3 0 0</u> 1 3 2 <u>1 2 0</u> <u>1 2</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Applying Conceptual Variation	1⁄4 1⁄4 (fruit) (veg.) (veg.)	 area is for growing strawberries, Draw a line to divide th fruit areas is for raspberries, the whole plot are each of these Draw lines to show this. Record the calculation to show th 	his. ¼×¼ = 1/16.
	1/4 (veg.) (veg.)	1.000	iven over for potatoes.